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Limit Cycle Predictions of a 
Nonlinear Journal-Bearing System 
An analysis is presented of the self-excited vibrations of a journal carried in a 
cylindrical fluid film bearing. Using linear stability theory, the values of the system 
parameters at the point of loss of stability are determined. These values agree well 
with those of previous investigators. Solutions of the nonlinear system equations 
are obtained by time discretization and by an arc-continuation method for solving 
the obtained nonlinear algebraic equations. In this way periodic solutions of the 
non linear equations of motion are calculated as a function of the system parameters. 
The behavior of the journal can be explained by the results of these calculations. 

1 Introduction 
Rotors carried in fluid-film journal bearings may develop, 

under certain operating conditions, an instability known as 
oil-whip or oil-whirl. This instability manifests itself by a growth 
of the whirl amplitude. This amplitude may become so large 
that it may endanger the safe operation of the bearing or 
damage it [1, 2], The frequency of the oscillation is about half 
the rotational frequency of the rotor. Rotational energy is 
transformed by the fluid forces from the rotor, which rotates 
with constant speed, into the whirl to sustain the oscillation. 
It is a purely self-excited vibration and it does not result from 
imbalance. 

By linearization of the equations of motion about the equi­
librium position Lund and Saibel [3] and Hollis and Taylor 
[4] determined on which combination of important parameters 
the rotor becomes unstable and starts whirling. Applying the 
method of averaging, Lund and Saibel also examined the ex­
istence of periodic motions in excess of the threshold speed. 
Hollis and Taylor [4] did the same, using the Hopf bifurcation 
theory. Their examinations were limited to the analysis of small 
periodic motions in the neighborhood of the equilibrium po­
sition on the linear stability threshold. In this paper the be­
havior of a simple rotor-bearing system will be examined in 
some detail. Firstly, the values of the dimensionless system 
parameters for which the journal loses its stability are calcu­
lated. This parameter set corresponds to a linear stability 
threshold which is in agreement with the results presented by 
other authors [3,4]. Secondly, a method will be discussed which 
provides periodic solutions of the nonlinear equations of mo­
tion as a function of the system parameters. It will be shown 
that periodic motions may even exist before the threshold of 
linear stability is reached. The results enable us to explain the 
behavior of the rotor-bearing system near this stability thresh­
old. 
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2 System Equations 
In this section the governing equations of motion of a ro­

tating journal mounted in a cylindrical fluid film bearing will 
be derived and transformed into dimensionless form. The re­
sulting equations contain three dimensionless parameters which 
entirely characterize the system. 

Consider a journal carried in a single fluid bearing, as il­
lustrated in Fig. 1. The applied load Fc on the journal is con­
stant both in direction and magnitude. Let the rotor mass be 
M and the journal center displacements x and y. C is the radial 
bearing clearance, fi the angular velocity, B the bearing length, 
D the bearing diameter, rj the lubricant viscosity, and t the 
time. The equations of motion are: 

M 

M s 
dh _ ( 
dt2 ~ XY' 

7y(x,y 

y, 
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~dt'~dt 
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(2) 

In equations (1) and (2) Fx and Fy are the hydrodynamic forces 
exerted by the lubricant film on the journal in the x and y 
direction, respectively. By solving the Reynolds equation over 
the bearing with appropriate boundary and cavitation condi­
tions, the pressure distributions around the bearing can be 

Fig. 1 Journal bearing configuration 
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Fig. 2 The linear stability threshold in the a-!)*2 plane for the short 
bearing model with /S = 0.25 

found. Integration of the pressure yields the bearing force on 
the journal. Here an approximate analytical solution is used, 
known as the Ockvirk short bearing solution [3, 4]. This so­
lution provides force values which are in close agreement with 
actual results for length-diameter ratios up to 0.5. Here, we 
will restrict ourselves to the case B/D equals 0.25. 

Equations (1) and (2) are written in a dimensionless form 
using C as the characteristic length and using the average ro­
tational velocity of rotor and its housing coc (= 0.5 Q) as the 
characteristic frequency. 

x/C 

T = Wct 

y* = y/c 
1 i)afiB 

4 Fr 

m = Q*2/a 

I£ 

x" = 

a Fc 

dx^_ 

dr , etc. (3) 

Parameter a is called the modified Sommerfeld number and 
m the dimensionless journal mass. The equations of motion 
(1) and (2) become: 

?• = F* (x*,y\ x*,y*y0) (4) mx 
I /a (5) my* = F*(x*,y*, x*, y*, 0) 

These two nondimensional equations are characterized only 
by m, 0, and a. 

3 Equilibrium Positions and Their Stability 
In this section, we will discuss the results of a linear stability 

analysis that yields combinations of the system parameters £2*2 

and a at which the rotor becomes unstable. 
As P has been set equal to 0.25, the time independent equi­

librium positions of the journal only depend on the value of 
the modified Sommerfeld number. The linear stability of the 
equilibrium points can be investigated after linearization of 
the equations of motion about these points. The linear stability 
analysis results in a stability threshold in the CT-Q*2 plane. In 
Fig. 2, this stability threshold in the a-Q*2 plane is plotted 
for /? = 0.25, using logarithmic axes. For small values of a 
and 0*2 the rotor is stable and for large values it is unstable. 
The results shown in Fig. 2 completely agree with the results 
obtained by Hollis and Taylor [4]. The variable a along the 
horizontal axis is linearly dependent on the rotor speed; while 
the variable Q*2 along the vertical axis depends quadratically 
on the rotor speed. In Fig. 2 lines are drawn that represent a 

set of system states where only the rotor speed varies and all 
other variables are constant. Hollis and Taylor [4] called such 
lines "constant bearing lines." The nondimensionalization (3) 
introduces the rotor speed in both a and m and therefore, each 
line can be indicated with the ratio between m and a. Using 
logarithmic axes, the constant bearing lines are straight lines 
in the <r-fl*2 plane as drawn in Fig. 2. 

It can be seen from Fig. 2 that the stability threshold has a 
minimum value if Q*2 is equal to approximately 6.4 while a is 
equal to about 0.4. Both for higher and lower values of a, the 
stability threshold increases in terms of Q*2. For higher values 
of a, the stability boundary reaches a maximum for Q*2 some­
where near the value 7.4. For low values of a and Q*2, no limit 
seems to be present for the values of fi,*2 and o>, respectively, 
at the stability threshold. 

Mathematically, linear stability is investigated by solving the 
corresponding classical eigenvalue problem of the linearized 
homogeneous equations of motion. At the stability threshold, 
the eigenvalue problem yields two purely conjugate imaginary 
eigenvalues. It can be verified (and this is actually done by 
Hollis and Taylor [4]) that a Hopf bifurcation occurs at the 
linear stability threshold. According to the Hopf bifurcation 
theory, periodic orbits exist which bifurcate from the threshold 
of linear stability [5]. In order to predict these periodic orbits 
regardless of their stability and taking the complete nonlinear 
characteristics of the bearing into account, a suitable solution 
method is now introduced. 

4 Solution Method 
A method is discussed which provides periodic solutions of 

the nonlinear equations of motion (4) and (5) as a function of 
any combination of the system parameters. This method is 
based on time discretization of the system equations combined 
with a numerical solution algorithm to solve the resulting non­
linear algebraic equations. 

Instead of a continuous periodic solution of (4) and (5) an 
approximate solution at a discrete number of times will be 
determined. In order to discretize the equations (4) and (5) let 
TJ (j = 1, . . . , N) be an equidistant partition of time T, 
yielding: 

C/-0 
N 

(6) 

with T the unknown period of time of the periodic solution. 
The velocity and acceleration both in x*-direction and v*-
direction at TJ are expressed with a 4th order central difference 
scheme. Application of this discretization scheme in the equa­
tions of motion at N discretization points yields 2N algebraic 
equations. Without loss of generality it is assumed that at r 
= 0 the velocity in the direction of x* is equal to zero. The 
resulting 2N + 1 algebraic equations are denoted by: 

G(z) = 0 (7) 

with the 2N + 1 unknowns: 

z* = [x*(ri), . . . ,X*(.TN), y\Tl), , y*(rN), 71 (8) 

This set of algebraic equations can be solved straight-forward 
by a standard multidimensional Newton-Raphson method. If 
one of the design variables or a fixed combination of design 
variables is added the equations can be solved by an arc-con­
tinuation method [6]. In this way, solutions are obtained as a 
function of that variable or that combination of variables. 

The operation of the arc-continuation method is based on 
a prediction step followed by correction steps until the solution 
at a next value of the design variable is reached. 

In order to find an initial solution for starting the Newton 
Raphson procedure, the Hopf bifurcation theory is used [5]. 
Following this theory, equilibrium point data, eigenvalue data 

Journal of Engineering for Industry MAY 1990, Vol. 112/169 

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/112/2/168/6506579/168_1.pdf by Eindhoven U
niversity of Technology user on 26 July 2020



l . O O f -

0.80 

g 0 . 6 0 -

& 0.40 -

0.20 

X -COOR. 

0.00 

- y -COOR. 

6.00 7.00 8.00 9.00 10.00 11.00 

ft" 
Fig. 3 Amplitudes of periodic solutions that branch off via a Hopf 
bifurcation at the linear stability threshold for the short bearing model, 
ml a kept equal to 100 
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Fig. 4 Frequencies of the periodic solutions with respect to the di-
mensionless time vs. (I*2 for the results shown in Fig. 3 

and eigenform data provide an approximation of small orbits 
near the equilibrium point at the stability threshold. Detailed 
information on numerical aspects, comparison with other tech­
niques, error estimation, etc. is given in [7] and [8]. 

5 Periodic Solutions 
In this section, some results concerning the periodic solutions 

are presented and discussed. These essentially nonlinear results 
illustrate the influence of nonlinearities of the bearing model 
on the behavior of the rotor near the stability threshold. 

As an example, the results of a series of periodic solutions 
are shown as a function of the design variables. The data 
corresponding to one of the points at the stability threshold 
shown in Fig. 2 is: 

equilibrium point: x* = 0.4211 y* = -0.3534 

eigenvalue: u, = 0.0 + 1.0003/ 
eigenform: ulx = 0.6657 uty = 0.5066 + 0.5478/ 
design variables: a, - 0.2591 Qf = 6.7151 

With this data, it is possible to estimate the form and frequency 
of periodic solutions that branch off. Rather than calculating 
periodic solutions as a function of the existing design variables, 
the solutions for a fixed m/a ratio (m/a = 100) are calculated, 
thus as a function of rotor speed. 

In Figs. 3 and 4, the results of this calculation are presented 
in order to show the solutions as a function of 0*2. Since we 
are dealing with a constant bearing line, we must be aware 
that a change of fl*2 will be proportional to a change of a. 

The amplitudes of the periodic solution in both the x*- and 
^"-directions have been calculated as the maximum value minus 
the minimum value divided by two in each of these directions. 
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Fig. 5 Some periodic solutions in the x'-y' plane at different values of 
Si*2 from the results shown in Fig. 3 
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Fig. 6 Amplitudes of the x'coordinate of existing periodic solutions 
in the o-a*2 plane for the short bearing model 

The number of discretization points that is used was equal to 
40. 

Figure 5 depicts the periodic solutions in the x*-y* plane, 
corresponding to some of the points shown in Fig. 3. Solution 
methods like the harmonic balance method used by Lund and 
Saibel [3] and Hollis and Taylor [4] will only predict elliptical 
solutions. Figure 5 shows that this assumption was not ac­
ceptable even for periodic solutions with very small amplitudes. 

For a constant bearing line, an increase of Q*2 agrees with 
an increase in the rotor speed. Figure 3 shows that, for an 
increase of the rotor speed, the amplitudes of a periodic so­
lution will increase. 

The unstable equilibrium position of the shaft makes it likely 
that the shaft will start to whirl with the predicted periodic 
solution. When such a periodic solution has a small amplitude, 
the rotor behavior can be quite acceptable; however, it can be 
seen that the periodic solutions grow rapidly even for a small 
increase of fl*2. In practical situations, therefore, it will be 
very difficult to recognize such motions. 

In Fig. 4, the radial frequency of the periodic solution is 
given with respect to the dimensionless time. All solutions have 
a radial frequency that equals approximately half the radial 
rotor frequency, as noticed in practice. 

If calculations are carried out as shown in Fig. 3 for a number 
of different points at the stability threshold, an impression of 
the rotor behavior will be obtained near the stability boundary. 
In Fig. 6, the results of these calculations are shown. In the 
cr-fl*2 plane, lines are drawn for which the periodic solutions 
have the same amplitude in the x*-direction. In order to get 
a clearer view near the stability threshold, only a part, but an 
important part, of the plane has been shown. The curve in­
dicated by x*-amplitude = 0.0 matches with the curve shown 
in Fig. 2. But the values of Q*2 are in this case not on a 
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logarithmic scale and, therefore, it is difficult to draw the 
constant bearing lines. One of the things that can be observed, 
although it can be seen more clearly in a picture that shows a 
larger part of the a-Q*2 plane, is that the existence of periodic 
solutions with large amplitudes (>0.7) does not depend on the 
value of a. Particularly for low values of a, it means that 
periodic solutions exist with large amplitude although the linear 
stability threshold is not reached. Here, one has to be aware 
of a restricted area for which the static equilibrium solution 
is attracting. 

Although the values of the amplitudes grow rapidly over a 
small range of values for Q*2, it is interesting to see how they 
grow as a function of increasing rotor speed. For high values 
of a, periodic solutions with small amplitudes can be found 
at rotor speeds that are less than the rotor speeds at the onset 
of instability. At an amplitude of approximately 0.7, the slow­
est rotor speeds occur at which a periodic solution still can be 
found. For values of a between 0.125 and approximately 1.0, 
an increased rotor speed above the stability threshold will mean 
that the amplitude of the existing periodic solution is slowly 
increasing. When the stability threshold in that area is reached, 
it may be possible to measure the whirl orbit of the rotor. With 
a 10 percent increase in Q*2 value above the stability threshold, 
the amplitudes are sometimes still smaller than 0.5. For values 
of a below 0.12, periodic solutions with a small amplitude exist 
above the linear stability threshold. Although Fig. 6 shows 
only a narrow band of the periodic solutions with low ampli­
tudes, the increase of the rotor speed along those constant 
bearing lines where these solutions still exist can be consid­
erable. For higher amplitudes in this area of a-values, periodic 
solutions are found for much lower values of Q* than the values 
for Q,* at the stability threshold. 

6 Conclusions 
The behavior of a two-degrees-of-freedom model of a rotor-

bearing structure has been reported. The quasistatic equilib­

rium positions of the unexcited rotor lose their stability when 
the rotational speed of the rotor increases. The onset of in­
stability is called the linear stability threshold. The existence 
of self-excited periodic motions of the rotor center near the 
linear stability threshold follows from the Hopf bifurcation 
theory. Both for high and for low values of the modified 
Sommerfeld number, it is to be expected from the results that 
the rotor suddenly jumps to a large orbit when the linear 
stability threshold is exceeded. For moderate values a more 
gradual transition is to be expected. It becomes clear from 
interpreting Fig. 6 that there are some values for the modified 
Sommerfeld number where experimental results will be ex­
tremely sensitive to small variations of the design variables 
and, therefore, practically hard to verify. 

For large amplitudes of the predicted motions, the periodic 
motion does not depend on the value for the modified Som­
merfeld number. 
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