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A B S T R A C T

This study develops a generalized solution for moisture-dependent thermal conductivity (λeff) in porous media, 
utilizing readily available parameters. By introducing arbitrary dry and saturated phases, the tri-phase model 
(solid, gas, and water) is simplified into a two-phase model. Seven analytical solutions are adapted, including 
series-parallel, Maxwell-Eucken, Landauer’s, exponential, and Somerton’s relations. The proposed method re
quires only two parameters to predict λeff under different degrees of saturation (Sr): effective dry thermal con
ductivity (λdry, where Sr = 0) and effective saturated thermal conductivity (λsat, where Sr = 1). In the absence of 
direct λsat measurement, this λsat can be obtained using λdry and the parallel relation for highly porous media, and 
using Landauer’s relation for medium-density materials. Validation results indicate that both Landauer’s and 
exponential relations provide the upper bound and lower bounds, respectively, for λeff. For medium-density 
materials, the upper bound aligns with the parallel relation and the lower bound aligns with Landauer’s relation.

1. Introduction

Building thermal insulation materials, and many mineral-based 
construction materials, commonly feature a porous structure to 
leverage the low thermal conductivity of air or gas within their pores. 
However, these porous materials are highly susceptible to moisture 
adsorption, condensation, rain, and groundwater uptake. The presence 
of water within the insulation materials introduces an additional ther
mal conductor, leading to increased heat transfer through the material. 
This rise in water content compromises the thermal resistance of the 
insulation material, thereby diminishing its performance. Despite efforts 
to mitigate moisture adsorption and water infiltration, complete 
avoidance is often challenging. Therefore, understanding how changes 
in water content impact the effective thermal conductivity of porous 
materials is essential.

Several methods are available for measuring the effective thermal 
conductivity of wet porous building materials. These methods include 
the transient method (periodic method) proposed by ISO 16957 [1], and 
the steady-state method using a standardized guarded hot plate or heat 
flow meter as outlined in ISO 10051 [2]. However, measuring the 
thermal conductivity of moist porous materials presents challenges. In 
the steady-state method, the applied temperature gradient induces a 
non-uniform distribution of moisture within the material. While this 

issue could potentially be addressed using the periodic method outlined 
in ISO 16957, this approach entails a more complex measurement setup 
and analysis. Consequently, a simple analytical solution based on 
commonly measured parameters, such as thermal conductivity under 
dry conditions, would prove advantageous in this context.

Material-specific approximation through data fitting is the simplest 
method. For example, McFadden [3] proposed simple linear and expo
nential relations for moist insulation material based on measurements 
using different techniques. However, for a generalized model, a more 
complex approach is required.

Wang et al. [4] applied a tri-phase thermal conductivity model based 
on capillary structure using fractal theory. This model considers pa
rameters such as porosity, pore size distribution, and fractal structure in 
determining the thermal conductivity under different moisture content. 
Similarly, Qin et al. [5] applied a fractal model for porous media under 
different degrees of saturation. Pei et al. [6] introduced a tortuosity 
correction in their tri-phase model to reflect the heat conduction path, 
alongside parameters such as porosity, water content, and thermal 
conductivity of the solid phase. Li et al. [7] proposed a multi-phase 
model for partially saturated cement-based porous composites, based 
on effective medium and mean-field theories, accounting for the pore 
shapes and orientations. Chu et al. [8] developed a fractal capillary 
bundle model at the pore scale for the effective thermal conductivity of 
porous geomaterials, considering structure parameters such as porosity, 
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tortuosity, pore size distribution and its fractal dimension. For moist 
silica aerogel, Chen et al. [9] proposed a fractal-intersection sphere with 
an inhomogeneous water film structural model. Theoretical frameworks 
are also available on other porous mediums, such as soils and rocks. 
Ghanbarian and Daigle [10] proposed a model to predict thermal con
ductivity in these moist porous media based on percolation theory and 
effective medium theory.

While these generalized models provide analytical solutions for 
approximating the thermal conductivity of moist material, they often 
involve parameters that are challenging to obtain, such as the thermal 
conductivity for the solid phase and pore size distribution. Therefore, a 
generalized model based on commonly measured parameters would be 
more practical for implementation.

This study aims to derive a generalized moisture-dependent thermal 
conductivity solution for porous insulation material, using only 
commonly measured and readily available parameters. Existing multi
phase models for porous materials, as reviews by Carson et al. [11] and 
Smith et al. [12] are referenced when deriving solutions for moist porous 
materials. The derived solutions are further validated with experimental 
data from the literature.

2. Model development

2.1. Two-phase models for effective thermal conductivity

The effective thermal conductivity (λeff) of air and water-filled 
porous materials can be approximated using a multiphase model 
approach. In a simplistic depiction, a dry porous material consists of a 
solid phase and a gas phase, while a fully saturated porous material 
comprises a solid phase and a water phase. This reduces the multiphase 
model to a two-phase model. Numerous analytical solutions exist for this 
model, each hinging on different assumptions regarding geometry and 
heat conduction pathways. Typically, these models involve three pri
mary parameters: the thermal conductivity of the first phase (λ1), typi
cally assigned to the solid phase (λs); the thermal conductivity of the 
second phase (λ2), typically assigned to the fluid phase in the pores, 

Nomenclatures

λeff (W⋅m− 1⋅K− 1) effective thermal conductivity
λ1 (W⋅m− 1⋅K− 1) thermal conductivity of the first phase
λ2 (W⋅m− 1⋅K− 1) thermal conductivity of the second phase
λs (W⋅m− 1⋅K− 1) thermal conductivity of the solid phase
λg (W⋅m− 1⋅K− 1) thermal conductivity of the gas phase
λw (W⋅m− 1⋅K− 1) thermal conductivity of the water phase
λa (W⋅m− 1⋅K− 1) thermal conductivity of air
λdry (W⋅m− 1⋅K− 1) effective dry thermal conductivity
λsat (W⋅m− 1⋅K− 1) effective saturated thermal conductivity
x2 (-) contribution fraction of the second phase
xg (-) contribution fraction of the gas phase
xw (-) contribution fraction of the water phase
φ (-) porosity
Sr (-) degree of saturation
w (-) water content
ρ (kg⋅m− 3) bulk density
ρr (kg⋅m− 3) relative density with respect to water

Fig. 1. Porous materials under both dry and fully saturated conditions, with the primary components when using a multiphase model approach. The depicted two- 
dimensional structure of the porous material is purely illustrative, and the actual structure could be fibrous, foam-like, or any other form of porous structure.
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either gas (λg) or water (λw); and the contribution fraction of the second 
phase (x2). Generally, x2 is assumed to be equivalent to the physical 
volume fraction of the pore, also known as porosity (φ) [11,12]. Fig. 1
illustrates a porous material under both dry and fully saturated 

Fig. 2. Different two-phase model approaches for effective thermal conductivity.

Table 1 
Parameters of four highly porous insulation materials [21] for the calculation.

Stone 
wool

Glass 
fibres

PU 
foam

Expanded 
cork

Measured values from [21]
Dry thermal conductivity, λdry 

(W⋅m− 1⋅K− 1)
0.040 0.035 0.030 0.040

Saturated thermal 
conductivity, λsat 

(W⋅m− 1⋅K− 1)

0.60 0.61 0.60 0.60

Porosity, φ (-) 0.95 0.99 0.95 0.9
Density, ρ (kg⋅m− 3) 60 30 40 150
Estimated values
Solid Thermal conductivity, λs 

(W⋅m− 1⋅K− 1)
3 [22] 1.4 [23] 0.21 

[24]
0.4 [25]

Water Thermal conductivity, 
λw (W⋅m− 1⋅K− 1)

0.6 [20]

Air Thermal conductivity, λa 

(W⋅m− 1⋅K− 1)
0.026 [20]

Table 2 
Calculated contribution fraction (x2) using Eqs. (1) to (2) based on λdry, λs and λa 
from Table 1.

Calculated x2 Measured Porosity φ

Equations Series, Eq. (1) Parallel, Eq. (2)

Stone wool 0.6469 0.9953 0.95
Glass fibres 0.7380 0.9934 0.99
PU foam 0.8478 0.9783 0.95
Expanded cork 0.6257 0.9626 0.90

Table 3 
Calculated saturated thermal conductivity (λsat) using Eqs. (1) and (2) based on 
x2 (Table 2) and φ (Table 1).

Calculated λsat Measured 
λsatEquations Series, 

Eq. (1)
Parallel, 
Eq. (2)

Series, 
Eq. (1)

Parallel, 
Eq. (2)

x2,eq1 x2,eq2 φ φ –
Stone wool 0.8362 0.6113 0.6250 0.7200 0.60
Glass fibres 0.7056 0.6052 0.6034 0.6080 0.61
PU foam 0.4678 0.5915 0.5490 0.5805 0.60
Expanded 

cork
0.5054 0.5925 0.5714 0.5800 0.60

Table 4 
Parameters of four medium-density materials [21] for the calculation.

Peat 
[26]

Sand 
[26]

Concrete 
[27]

Clay- 
cement [28]

Measured values from
Dry thermal conductivity, λdry 

(W⋅m− 1⋅K− 1)
0.10 0.15 0.42 0.43

Saturated thermal 
conductivity, λsat 

(W⋅m− 1⋅K− 1)

0.73 1.85 1.16 1.50

Porosity, φ (-) 0.77 0.55 0.20 0.48
Density, ρ (kg⋅m− 3) 600 1200 2142 1283
Estimated values
Solid Thermal conductivity, λs 

(W⋅m− 1⋅K− 1)
1.06 7.5 1.65 3.2

Water Thermal conductivity, 
λw (W⋅m− 1⋅K− 1)

0.6 [20]

Air Thermal conductivity, λa 

(W⋅m− 1⋅K− 1)
0.026 [20]
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conditions, along with the primary components when applying a 
multiphase model to predict λeff.

Six models derived from multiphase models, as reviewed by Carson 
et al. [11] and Smith et al. [12], are included in this study, illustrated in 
Fig. 2.

Among the various two-phase models, the simplest approach to 
predict λeff involves treating the solid and fluid as thermal resistors 
either in series or in parallel with respect to the heat flow, as expressed 

in: 

λeff =
1

(1 − x2)/λ1 + x2/λ2
(1) 

and 

λeff = λ1(1 − x2) + λ2x2 (2) 

respectively. Although these assumptions neglect physical interaction 
between phases, they provide lower and upper bounds for effective 
thermal conductivity (Fig. 2).

Another well-established model is the Maxwell-Eucken relation [13], 
equivalent to the Hanshin-Shtrikman upper and lower bounds [14], and 
can be represented by: 

λeff = λ1
λ2 + 2λ1 − 2(λ1 − λ2)x2

λ2 + 2λ1 + (λ1 − λ2)x2
(3) 

and 

Table 5 
Calculated contribution fraction (x2) using Eqs. (1), (2) and (5) based on λdry, λs 
and λa from Table 4.

Calculated x2 Measured 
Porosity φ

Equations Series, Eq. 
(1)

Parallel, Eq. 
(2)

Landauer, Eq. 
(5)

Peat 0.2414 0.9284 0.6994 0.77
Sand 0.1676 0.9841 0.7113 0.55
Concrete 0.0469 0.7574 0.5206 0.20
Clay- 

cement
0.0528 0.8727 0.5994 0.48

Table 6 
Calculated saturated thermal conductivity (λsat) using Eqs. (1), (2) and (5) based on x2 (Table 5) and φ (Table 4).

Calculated λsat Measured λsat

Equations Series, Eq. (1) Parallel, Eq. (2) Landauer, Eq. (5) Series, Eq. (1) Parallel, Eq. (2) Landauer, Eq. (5)
x2,eq1 x2,eq2 x2,eq5 φ φ φ –

Peat 0.8945 0.6329 0.7194 0.6654 0.7041 0.6886 0.73
Sand 2.5619 0.7168 1.4214 1.0287 3.7257 2.4550 1.85
Concrete 1.5249 0.8547 1.0169 1.2222 1.4400 1.3909 1.16
Clay-cement 2.6045 0.9309 1.3005 1.0390 1.9520 1.6204 1.50

Fig. 3. Effective thermal conductivity for moist materials represented in (a) three phases, and (b) two phases.
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λeff = λ2
λ1 + 2λ2 − 2(λ2 − λ1)(1 − x2)

λ1 + 2λ2 + (λ2 − λ1)(1 − x2)
(4) 

respectively. This model delineates upper and lower limits for the 
effective thermal conductivity of macroscopically homogeneous and 
isotropic multiphase materials, in terms of phase volume fraction and 
phase conductions. The model assumes individual closed pores 
dispersed uniformly in the solid matrix and does not account for a 
continuous conduction pathway through pores. The Maxwell-Eucken 
bounds further refine the estimated range, falling within the bounds 
set by Eqs. (1) and (2), as shown in Fig. 2.

Another approach, proposed by Landauer [15], is based on a random 
mixture assumption, treating each phase as if surrounded by a homo
geneous medium with properties are the mixture. The model allows 
open porosity where the interconnected pore phase forms a continuous 
heat conduction pathway, leading to a stronger dependence of thermal 
conductivity on the pore phase. This solution, known also as the Effec
tive Medium Theory (EMT), can be expressed either in its implicit form 
as follows: 

(1 − x2)
λ1 − λeff

λ1 + 2λeff
+ x2

λ2 − λeff

λ2 + 2λeff
= 0 (5) 

alternatively, in its explicit form as follows: 

λeff =
1
4

{

λ2(3x2 − 1)+λ1(2− 3x2)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[λ2(3x2 − 1)+λ2(2 − 3x2)]
2
+8λ1λ2

√ }

(5a) 

The solution sits within the bounds set by Eqs. (3) and (4), however, 
do not universally fit all measurements examined in the original study.

A simple exponential relation, proposed by Tichá et al. [16], assumes 
a closed-pores microstructure with non-conducting pores, therefore 
eliminating the parameter λ2. However, the proposed equation breaks 
down at a higher pore volume fraction and approaches zero. This 
breakdown can be mitigated by reconsidering the effect of the thermal 
conductivity of the second phase and is expressed by: 

λeff = (λ1 − λ2)⋅exp
(
− Bx2

1 − x2

)

+ λ2 (6) 

where the parameter B relates to pore shape, with B = 3/2 assumed for 
spherical pores.

λs for inorganic minerals vary widely depending on mineral 
composition and crystal orientation, ranging from 1 to 5 W⋅m− 1⋅K− 1 

[17], and up to 10 W⋅m− 1⋅K− 1 for quartz with crystal orientation parallel 
to the heat source [18]. Organic solid matter has lower λs values, ranging 
from 0.13 to 0.35 W⋅m− 1⋅K− 1 [19]. For insulation materials filled with 
air, λg is typically equivalent to the thermal conductivity of air (λa), 
around 0.026 W⋅m− 1⋅K− 1 at 20 ◦C [20]. For a fully saturated porous 
material, λw is approximately 0.6 W⋅m− 1⋅K− 1 at 20 ◦C [20].

2.2. Effective saturated thermal conductivity

2.2.1. Highly porous insulation materials
For building insulation materials, the effective saturated thermal 

conductivity (λsat) is less commonly measured and investigated 
compared to the effective dry thermal conductivity (λdry), both 
commercially and in the literature. Theoretically, a fully saturated 
porous material can be simplified as a two-phase model by assuming all 
pores are filled with water in their saturated state. The same equations 
(Eqs. (1) to (6)) should provide a valid prediction for λsat based on the 
same contribution fraction x2 used to predict λdry. To validate this 
assumption, Eqs. (1) and (2), representing the lower and upper bounds 
for λdry (Fig. 2), are used to calculate λsat and compared against their 
measured λsat. Four highly porous insulation materials from the open- 
source MASEA database [21] are selected, and the parameters of these 
materials used in the calculations are listed in Table 1.

When applying Eqs. (1) to (6) to predict λdry, x2 is generally assumed 
to be equivalent to the physical porosity (φ). Table 2 presents the 
calculated x2 for the pore when applying Eqs. (1) and (2) based on 
measured λdry, and λs and λa obtained from the literature. The calculated 
x2 from Eqs. (1) and (2) form the lower and upper limits for the 
measured φ, and it appears that the prediction of x2 following Eq. (2) is 
closer to φ.

λsat is further predicted based on x2 calculated from Table 2 and 
compared to λsat calculated from the measured φ. Here, the second phase 
is the water phase. Both sets are then compared against the measured 
λsat. The results are listed in Table 3. Among all four calculations, λsat 
calculated from x2 using Eq. (2) is closer to the measured λsat, aligning 
with the lower boundary close to the second phase (λw at 0.6 
W⋅m− 1⋅K− 1). In contrast, λsat calculated from the measured φ signifi
cantly deviates from the measured λsat. This deviation suggests the 
limitation of using porosity (φ) as x2 in estimating λeff. It should also be 
noted that the physical pore volume accessible to water is not always the 
same as the total pore volume that can be filled by gas (air).

Despite the varying λs value (0.21 to 3 W⋅m− 1⋅K− 1), all samples 
exhibit a similar range in λsat. This similarity indicates that the influence 
of the solid phase’s thermal conductivity has little effect on the thermal 
conductivity of saturated insulation material, aligning with findings 
from [6]. This is evident from the MASEA database [21], where the 
majority of porous materials have λsat values close to λw.

Based on these findings, in the absence of direct λsat measurement, 
λsat can be approximated using the parallel relation. The contribution 
fraction x2 is first estimated using Eq. (2) with λdry, λs, and λa as inputs. 
Then, λsat is approximated using the same Eq. (2) with the calculated x2, 
λs and λw as the inputs. It appears that λsat is often close to the boundary 
of the second phase (λw). Therefore, when λs is not known, it is 
reasonable to equate λsat to λw for highly porous materials.

2.2.2. Medium-density materials
The λsat approximation is further applied to four medium-density 

materials [26,27,28], typical examples are clay and sand, and 

Fig. 4. Different two-phase model approaches for effective thermal conduc
tivity under moist conditions.

C.H. Koh and H.J.H. Brouwers                                                                                                                                                                                                              International Journal of Heat and Mass Transfer 234 (2024) 126138 

5 



cement-based construction materials such as mortar and concrete. The 
parameters of these materials used in the calculations are listed in 
Table 4.

The prediction of x2 from Eqs. (1) and (2) significantly deviate from 
the measured φ (Table 5). However, it is observed that the measured φ 

falls between the calculated x2 values from Eqs. (1) and (2). To provide a 
more accurate approximation, Landauer’s relation (Eq. (5)), also known 
as Effective Medium Theory, is included as well. The prediction of x2 
following Eq. (5) is shown to be closer to φ.

The calculated λsat based on the calculated x2 (Table 5) and the 

Fig. 5. Analytical solutions to approximate moisture-dependent thermal conductivities using Eqs. (8) to (15), in comparison to measurement data of different porous 
insulation materials from the MASEA database from Fraunhofer-IBP (denoted 1) and material database from WUFI (denoted 2).
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measure φ are listed in Table 6. Similarly, λsat calculated from x2 using 
Eq. (5) is closer to the measured λsat. Additionally, Eq. (5) forms the 
lower bound for the λsat estimation, while Eq. (1) remains the upper 
bound.

Based on these findings, in the absence of direct λsat measurement, 

λsat can be approximated using Landauer’s relation for medium-density 
materials. However, its accuracy is lower than applying the parallel 
relation on highly porous materials.

Fig. 6. Similar to Fig. 5, but focusing only on lower degrees of saturation.
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2.3. Adaptation of multiphase solid-gas-water models to two-phase 
models

A partially saturated porous material consists of three distinct pha
ses: solid, water and gas, as illustrated in Fig. 3a. Within the pores, both 
water vapour and condensed water are treated as a single water phase. 
Analytical solutions for these tri-phase systems can be derived from 
multiphase models. This study simplifies the tri-phase solutions into 
two-phase solutions by introducing two arbitrary phases: the ‘solid- 
water’ phase and the ‘solid-gas’ phase, corresponding to saturated and 
dry conditions, respectively, as shown in Fig. 3b.

The three-phase moist material is transformed into two separate two- 
phase components. The ‘solid-water’ phase is represented by the effec
tive saturated thermal conductivity (λsat) and an arbitrary contribution 
fraction (x2); the ‘solid-gas’ phase is represented by the effective dry 
thermal conductivity (λdry) and a corresponding arbitrary contribution 
fraction (1 - x2). The arbitrary contribution fraction x2 is assumed to be 
proportional to the physical degree of saturation (Sr) in the moist porous 
material. By assuming a similar volume fraction of the solid phase is 
allocated to the ‘solid-water’ phase, x2 is equivalent to Sr. Similarly, the 
contribution fraction for the ‘solid-gas’ phase can be equated to (1 – Sr). 
The relationship between Sr and water content (w in kg water / kg dry 
material) can be described using: 

Sr =
w⋅ρr

ϕ
(7) 

where ρr is the relative density of the dry porous material with respect to 
water (specific density of solid divided by water density), and φ is the 
amount of pore volume accessible to water. φ = 1 represents the 
maximum amount of water the material can absorb in its saturated state, 
where Sr = 1. φ is typically equivalent to open porosity but should 
include closed pores with vapour-permeable walls that are also acces
sible to water vapour.

This reduction transforms the tri-phase moist porous model into a 

two-phase model characterized by two parameters: effective dry thermal 
conductivity (λdry, where Sr = 0) and effective saturated thermal con
ductivity (λsat, where Sr = 1). λdry and λsat form the lower and upper 
boundary limits, respectively, of λeff(Sr). This approach eliminates the 
need for the solid phase parameter (λs). Measuring λs for a continuous 
solid state without any pore spaces in a porous material is impractical 
[29]. Moreover, λs values based on the main constituents of a material 
provide only an approximation.

Based on these assumptions, the two-phase models are adapted for 
effective thermal conductivity, λeff(Sr), as follows: 

λeff (Sr) =
1

(1 − Sr)
/

λdry + Sr
/

λsat
(8) 

λeff (Sr) = λdry(1 − Sr) + λsatSr (9) 

λeff (Sr) = λdry
λsat + 2λdry − 2

(
λdry − λsat

)
Sr

λsat + 2λdry +
(
λdry − λsat

)
Sr

(10) 

λeff (Sr) = λsat
λdry + 2λsat − 2

(
λsat − λdry

)
(1 − Sr)

λdry + 2λsat +
(
λsat − λdry

)
(1 − Sr)

(11) 

and  

Additionally, the exponential function in Eq. (7) is modified to: 

λeff (Sr) = λdry⋅exp(BʹSr) (13) 

with B’ defined as: 

Bʹ = ln
(

λsat

λdry

)

(14) 

An empirical relation based on Somerton et al. [30,31] is included for 
comparison, suggesting the following correlation: 

λeff (Sr) = λdry

(
1 −

̅̅̅̅̅
Sr

√ )
+ λsat

̅̅̅̅̅
Sr

√
(15) 

This relation is derived from partially brine-saturated quartz sand. 
This model follows a similar parallel relation but assigns a higher 
contribution fraction to the saturation phase.

These models are illustrated in Fig. 4. Similar to the initial models, 
both series and parallel relations form the outermost lower and upper 
bounds, followed by the Maxwell-Eucken relations. Both Landauer’s and 
exponential relations fall within the bounds of Maxwell-Eucken’s rela
tion. However, the Somerton relation is an outlier, suggesting a higher 
λeff than the parallel model.

The equations for λeff(Sr) require only two parameters: λdry (Sr = 0) 
and λsat (Sr = 1). The λdry is a commonly measured property for insu
lation materials. As discussed in the previous section, for highly porous 
material, λsat can be approximated using parallel relation with λdry, λa 
and λs. The results, however, are close to λw. When λs is not known, it is 
therefore reasonable to equate λsat to λw for highly porous materials. By 
making this assumption, the estimation of λeff(Sr) requires only one 
measured parameter, namely λdry.

Other critical environmental parameters, particularly temperature, 
are assumed to be independent and constant in this study. This 
assumption simplifies the model but could be revisited in future studies 
to account for the temperature dependence of thermal conductivity, 

Fig. 7. Scaled thermal conductivity (Eq. (17)) versus degree of saturation (Sr) 
for Eqs. (12) and (13), plotted against the overall measured data from Fig. 5
with the corresponding coefficient of determination R2.

λeff (Sr) =
1
4

{

λsat(3Sr − 1)+ λdry(2 − 3Sr)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[
λsat(3Sr − 1) + λdry(2 − 3Sr)

]2
+ 8λdryλsat

√ }

(12) 
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especially for materials and conditions where temperature variations are 
significant.

3. Results and discussion

3.1. Model validation to highly porous insulation materials

The validation of Eqs. (8) to (15) are conducted using materials 
featuring measured moisture-dependent thermal conductivity data. Two 
established sources are used for model validation: the open-source 
MASEA database [21] and a commercial database [32]. Only mate
rials with measured moisture-dependent thermal conductivity are 
considered, leading to a selection of thirteen porous insulation mate
rials. These materials include various types such as stone wools, 
expanded polystyrene (EPS) foam, urea-formaldehyde (UF) foam, 

expanded cork, phenolic (PF) foam, polyurethane (PU) foam, extruded 
polystyrene (XPS) foam and glass fibres. Materials with estimated 
properties are excluded from the analysis.

The measured moisture-dependent thermal conductivities are 
plotted against the corresponding degree of saturation (Sr), alongside 
the predicted values from Eqs. (8) to (15), as depicted in Fig. 5. The Sr is 
converted from water content (w) using Eq. (7) based on the measured 
porosity (φ) and bulk density (ρ).

Overall, the measurement data generally falls within the upper and 
lower bounds set by both the series-parallel relations and Maxwell- 
Eucken’s relations. The fittings also indicate the validity of equating 
contribution fraction x2 to Sr in estimating λeff when applying Eqs. (8) to 
(15).

At lower degrees of saturation (up to 0.2), the insulation materials 
tend to exhibit effective thermal conductivities closer to the lower 

Fig. 8. Analytical solutions to approximate moisture-dependent thermal conductivities using Eqs. (8) to (15), in comparison to measurement data of different 
medium-density materials based on Bouguerra [28] (denoted 1) and Taoukil et al. [27] (denoted 2).
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bounds. In some instances, they align with the series relation, as illus
trated in Fig. 6. In this lower saturation range, the majority of the 
measurements follow the trends of Maxwell-Eucken-1′s, exponential, 
and Landauer’s relations.

As the moisture content increases further, the effective thermal 
conductivities demonstrate an exponential trend. Most of the data points 
fall within a narrower upper bound set by Landauer’s relation and a 
lower bound set by exponential relations, as displayed in Fig. 5. It should 
be noted that the measurements do not follow the empirical square root 
correlation as suggested by Somerton. This could be due to the differ
ence in porosity: Somerton’s relation is derived based on material with 
porosity between 0.3 and 0.5, while the insulation materials investi
gated in this section are highly porous (φ ≥ 0.9).

Upon overall assessment, the measurement data does not perfectly 
conform to the derived solutions based on Eqs. (8) to (15). Nevertheless, 
the trends are notably consistent with an exponential trend. Specifically, 
the effective thermal conductivity increases gradually at lower moisture 
content levels and then exponentially approaches the thermal conduc
tivity for a standalone water phase. Therefore, a single linear approxi
mation would either underestimate the effective thermal conductivity at 
a lower water content range (if approximated using the entire water 
content range, similar to a parallel relation) or at a higher range (if 
approximated using only the lower water content range).

The analysis of the proposed solutions reveals that both Landauer’s 
and exponential relations, represented by Eqs. (12) and (13), provide the 
best fits for the measured data. The scaled thermal conductivity (λr) is 
defined as follows: 

λr(Sr) =
λeff (Sr) − λdry

λsat − λdry
(17) 

where λdry is the thermal conductivity for Sr = 0, and λsat is the one for Sr 
= 1. This is plotted against the corresponding Sr in Fig. 7. Both Lan
dauer’s and exponential relations exhibit a high average coefficient of 
determination (R2), with values of 0.9799 and 0.9725 respectively. This 
indicates a strong correlation between the predicted and observed 
values. Furthermore, Eq. (12) could serve as the upper bound, while Eq. 
(13) could serve as the lower bound for the moisture-dependent thermal 
conductivity.

3.2. Model validation to medium-density materials

Eqs. (8) to (15) are further validated on different medium-density 
materials. Fig. 8 presents the moisture-dependent thermal conductiv
ity for various concretes, specifically five different wood-clay concrete 
samples based on Bouguerra [28], and five different wood concrete 
samples from Taoukil et al. [27]. Fig. 10 shows the moisture-dependent 
thermal conductivity for ten different peat, soil, and sand samples based 
on He et al. [26]. The corresponding scaled thermal conductivity for 
Fig. 8 and Fig. 10 are plotted in Fig. 9 and Fig. 11, respectively.

The effective thermal conductivity of medium-density materials in 
Fig. 8 no longer falls within the narrower bounds set by Landauer’s and 
exponential relations. Overall, the data are contained within the wider 
bounds set by Somerton’s and exponential relations, with most of them 
further falling within narrower bounds set by parallel and Landauer’s 
relation. Instead of an exponential trend exhibited by highly porous 
materials, the effective thermal conductivity of medium-density moist 
materials follows a linear trend, corresponding to an average R2 of 
0.9721 for the parallel relation, as shown in Fig. 9.

In contrast, the effective thermal conductivity of moist sand and soil 
follows more closely a square root trend, as shown in Fig. 10. This aligns 
with the empirical square root correlation suggested by Somerton. 
Somerton’s relation exhibits an average R2 of 0.9566, while the parallel 
relation has a lower R2 of 0.8989. Both Somerton’s and parallel relations 
can serve as upper and lower bounds, respectively, for soil and sand-type 
materials, as shown in Fig. 11.

3.3. Parametric study and discussion

Eqs. (8) to (15) utilize only two main parameters, namely effective 
dry thermal conductivity (λdry) and effective saturated thermal con
ductivity (λsat), without considering porosity, pore shapes, pore size 
distribution, or material types. From Fig. 5 to Fig. 11, a distinct pattern 
emerges, which is summarized in Fig. 12. For materials with low λdry (up 
to 0.05 W⋅m− 1⋅K− 1) and low λsat (around 0.6 W⋅m− 1⋅K− 1), their effective 
thermal conductivities fall within the narrow and lower boundaries set 
by exponential and Landauer’s relations. For materials with higher λdry 
and λsat, such as medium-density materials, the distribution of their 
effective thermal conductivity becomes broader. The upper bound shifts 
higher, limited by the parallel relation, and in the case of soil and sand, 
by Somerton’s relation. Similarly, the lower bound shifts upward, 
aligning with Landauer’s relation, and for soil and sand, with the par
allel relation.

When materials are categorized based on their bulk density (ρ) and 
porosity (φ), a similar pattern can be observed, as shown in Fig. 13. For 
materials with lower bulk densities (below 200 kg⋅m− 3) and higher 
porosity (above 0.9), their thermal conductivities fall within the expo
nential and Landauer’s relations. Additionally, materials with higher 
bulk densities and lower porosities exhibit effective thermal conduc
tivities that generally follow a linear trend, albeit within a broader 
range.

For highly porous materials, the effective thermal conductivities do 
not show significant variation based on their constituents (organic or 
inorganic) or form (foam or fibrous mat). The low fraction of the solid 
phase in these materials diminishes the influence of the solid phase’s 
thermal conductivity on their overall thermal conductivity. Due to their 
highly porous structure, the water phase does not form a continuous 
conduction path at a lower degree of saturation and only increases 
exponentially at a higher degree of saturation.

Conversely, the thermal conductivity of the solid phase plays a more 
significant role in the effective thermal conductivity of medium-density 
materials. It can be observed that sand and soils with higher silica (sand) 
content align more closely with the upper Somerton’s relation, 
compared to samples with lower silica content, which are closer to a 
lower parallel relation (Fig. 10). The granulated form of these materials 
also contributes significantly. The presence of an additional water layer 

Fig. 9. Scaled thermal conductivity (Eq. (17)) versus degree of saturation (Sr) 
for Eqs. (9) and (12), plotted against the overall measured data from Fig. 8 with 
the corresponding coefficient of determination R2.
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Fig. 10. Analytical solutions to approximate moisture-dependent thermal conductivities using Eqs. (8) to (15), in comparison to measurement data of different 
medium-density materials based on He et al. [26].
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on granulated materials increases the surface area in contact with 
neighbouring particles, even at lower degrees of saturation, thereby 
enhancing the heat conduction paths, as indicated by Somerton’s 
relation.

The broader range of effective thermal conductivity exhibited by the 
selected medium-density materials can be attributed to the inhomoge
neous nature of the material constituents and microstructure, as well as 

moisture distribution in the moist materials. Additionally, the chal
lenging measurement techniques used can introduce uncertainties to the 
results. This variability underscores the complexity of accurately pre
dicting thermal conductivity in medium-density materials, highlighting 
the importance of considering both material composition and micro
structural characteristics in thermal conductivity models.

4. Conclusion

A straightforward and robust two-phase method is proposed to pre
dict moisture-dependent thermal conductivity (λeff) for porous mate
rials, of medium and high porosity. This approach adapts six analytical 
solutions from the multiphase model, including series-parallel, Maxwell- 
Eucken, Landauer’s, and exponential relations, for application to moist 
porous materials. By introducing an arbitrary effective dry phase and a 
saturated phase, the original tri-phase model, which includes solid, air, 
and water phases, is simplified into a two-phase model. This reduction 
streamlines the analysis and facilitates practical implementation.

The proposed method requires only two parameters to predict λeff 
under different degrees of saturation (Sr): effective dry thermal con
ductivity (λdry, where Sr = 0) and effective saturated thermal conduc
tivity (λsat, where Sr = 1). λdry and λsat form the lower and upper 
boundary limits, respectively, of λeff(Sr).

For highly porous materials (φ ≥ 0.9), in the absence of direct λsat 
measurement, λsat can be obtained using the parallel relation. The 
contribution fraction x2 is first estimated using Eq. (2) with λdry, λs, and 
λa as inputs. Then, λsat is approximated using the same Eq. (2) with the 
calculated x2, λs and λw. It appears that λsat is often close to λw. There
fore, when λs is not known, it is reasonable to equate λsat to λw for highly 
porous materials. For medium-density materials, λsat can be obtained 
using Landauer’s relation following the same procedure, though with a 
lower accuracy.

Fig. 11. Scaled thermal conductivity (Eq. (17)) versus degree of saturation (Sr) 
for Eqs. (9) and (15), plotted against the overall measured data from Fig. 10
with the corresponding coefficient of determination R2.

Fig. 12. Variations of scaled thermal conductivity with degrees of saturation at different dry thermal conductivity (λdry) and saturated thermal conductivity (λsat).
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The validation results indicate that both Landauer’s relation, Eq. 
(12), and exponential relation, Eq. (13), provide the best fit to the 
measured data of partially saturated highly porous media, with average 
coefficients of determination (R2) at 0.9799 and 0.9725, respectively. 
Moreover, Landauer’s relation can serve as the upper bound, while the 
exponential relation can serve as the lower bound for moisture- 
dependent thermal conductivity.

For medium-density materials, the distribution of their effective 
thermal conductivity becomes broader. The upper bound aligns with the 
parallel relation and, in the case of soil and sand, with Somerton’s 
relation. The lower bound aligns with Landauer’s relation and, for soil 
and sand, with the parallel relation.

This proposed approach, grounded in commonly measured param
eters, offers a practical method for predicting the thermal conductivity 
of moist porous insulation material. Its simplicity and reliance on readily 
available data enhance its feasibility for real-world implementation.

Further assessments for model improvement include combining the 
study with temperature-dependant thermal conductivity and evaluating 
the influence of material composition and microstructural characteris
tics to the models.
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