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Random packing fraction of binary hyperspheres with small or large size difference:
A geometric approach
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The random packing fraction of binary particles in D-dimensional Euclidean space RD is studied using a
geometric approach. First, the binary packing fraction of assemblies with small size difference are studied, using
a recently developed model that has its foundations in the excluded volume model by Onsager for cylinders
and spherocylinders (D = 3). According to this model the packing increase by bidispersity is proportional to
(1 − f )(uD − 1)2, with f as monosized packing fraction, u as size ratio and D as space dimension. The model
predictions are compared with computational results for disks in two dimensions (D = 2) and hyperspheres in
the large-dimension limit (D → ∞), yielding very good agreement. Subsequently, the packing of hyperspheres
with large size difference is modeled, employing the classic theory of Furnas. This theory, developed for three
dimensions, starts from an infinite size ratio of larger and smaller particles (u → ∞). Here, the pertaining
equations are applied to hyperspheres, and successfully compared with computational results for hyperspheres in
the large-dimension limit. Furthermore, an asymptotic approximation of the binary packing fraction for large size
ratio is derived, which shows that the first order variation of the Furnas packing fraction (u−1 = 0) is proportional
to (2 − f )u−1. Finally, a normalized D-dimensional binary packing graph is presented, governing a simplified
phase diagram that borders the binary random packing fraction of amorphous assemblies. To summarize, basic
space-filling and geometric (“athermal”) theories on “simple” hard spheres appear to be a valuable tool for the
study of hyperspheres’ random packing and amorphization.
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I. INTRODUCTION

The packing of particles is an old physical and math-
ematical puzzle and has received much attention the past
millennia [1]. Attention has, for instance, been paid to reveal-
ing packing geometries and the route to understanding liquids
and (amorphous) materials. Hard sphere systems are ideal to
study liquid-glass-crystal transitions [2]. Furthermore, study
of amorphous hyperspheres in D-dimensional space enables a
better understanding of glass formation in three dimensions,
and it brings the problem in contact with signal digitization
and error coding theory [3].

When equally shaped particles with different sizes are
randomly packed, i.e., generating a polydisperse packing of
similar particles, the packing fraction increases compared to
the monosized packing of the congruent (or identical) par-
ticles. By combining two similar particles of different sizes,
such a polydisperse packing can readily be assembled. In this
paper this specific polydisperse particle packing is analysed,
viz. the packing of two discretely sized and equally shaped
particles, here termed bidisperse or binary mixtures. Though
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this bidisperse packing is a relatively simple polydisperse
system, it forms the basis of the packing description of poly-
disperse arrangements. Early work on binary packings was,
for instance, aimed at constructing packings of continuously
sized particles with a wide size ratio [4–9].

The binary packing of similar particles was studied ex-
perimentally, computationally and analytically [10–32]. For
binary mixes with size ratio u close to unity (u ↓ 1), analytical
equations are available [18,20,28,32]. Also, for the other limit,
viz. infinite size ratio u (u → ∞), i.e., two noninteracting
fractions, an analytical expression for the binary void fraction
is available [4,5], revisited later [22,25].

Here, in Sec. II first the model for binary particles with
small size disparity is introduced [32], which was based on
Onsager’s excluded volume model from 1949 [33]. Onsager
developed this original geometric model for the isotropic
liquid-to-nematic (I-N) phase transition of hard rodlike (sphe-
rocylinders and cylinders) particles, which was published in
his seminal paper. Onsager demonstrated that a phase transi-
tion can be predicted based on two-particle (spherocylinders
or cylinders) interactions represented by the second virial term
in an expansion of the free energy of the system. Onsager
based these expressions on the orientally averaged excluded
volume of two spherocylinders or two cylinders with unequal
lengths and diameters. In essence this is an example of a statis-
tical geometric approach. In Ref. [32], this excluded volume
concept of two-particle pairs was combined with the statisti-
cally probable combinations of small and large particle pairs,
yielding an analytical expression for the packing fraction of
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binary similar particles with small size disparity. This geomet-
ric approach of particle packing was successfully validated
against a broad collection of computational and experimental
data of packings in three dimensions. Here, this model is
applied to binary disks in plane and to binary hyperspheres
with small size difference (uD ↓ 1).

Next, in Sec. III, the classic model of Furnas is recapitu-
lated, which formulates the packing of particles with infinite
size difference (or u−1 = 0). About 100 years ago, Furnas
[4,5] introduced the concept of noninteracting particle classes,
i.e., particle groups where the smallest particle of one group
is much larger than the largest particle of the other group.
Combining the groups implies that they are not interacting
and forming separate phases. This geometric concept has been
proven to be correct by experiments [4,5,9,11] and simula-
tions [22,25,27] in three dimensions. Here, we will apply this
model to binary mixes of hyperspheres with infinite large
size ratio. In Sec. IV, an asymptotic approximation of the
bidisperse fraction is presented for large but finite size dif-
ferences (so u−1 > 0), that approaches the Furnas solution in
the infinite size difference limit.

Subsequently, in Sec. V a generic graph is introduced of the
normalized bidisperse packing fraction. This figure borders
the normalized packing fraction of amorphous assemblies, as
function of composition and from size ratios unity to infinity,
and in the vicinity of these—opposite—limits. The conclu-
sions are collected in Sec. VI.

The presented models provide the random or amorphous
packing of nonoverlapping (i.e., hard) particles in the bidis-
perse case relative to the monodisperse case, in D-dimensional
Euclidean space RD. They are applicable when the packing of
the smaller and the larger particles, and their binary packing,
are compacted equally. Whether the assembly’s density cor-
responds to the maximally random jammed state (MRJ) [1],
random close packing (RCP), random loose packing (RLP),
or a configuration in between these closest or loosest pos-
sible ways of particle packing, is inconsequential. Random
particle packings are prototypical glasses in that they are max-
imally disordered while simultaneously being mechanically
rigid. Moreover, size dispersity frustrates crystallization and
is therefore a glass phase enabler. Indeed the glass transition
is related to a specific packing density, in Table II of Ref. [2]
packing fraction values for different protocols are listed. Also
these packing fractions are affected by bidispersity and are
captured by the presented model.

II. SMALL SIZE DIFFERENCE

This paper addresses the assemblies of binary (discretely
sized) similar particles in D-dimensional space, the larger and
smaller ones with characteristic sizes dL and dS, respectively,
with a normalized number distribution

P(d ) = XSδ(d − dS) + XLδ(d − dL), (1)

where δ is the Dirac delta function, and XS and XL are the
number fractions of the smaller and larger components for
which the following identity holds

XS + XL = 1. (2)

In this section the analytical model for binary mixtures
with small size disparity [32] is recapitulated and subse-
quently applied to binary hyperspheres in the large-dimension
limit.

A. Analytical model

By employing the excluded volume model of Onsager [33],
in Ref. [32] the following equation was derived for the random
packing fraction of similar binary D-dimensional particles, as-
suming that mixes and two monodisperse assemblies possess
same compaction, and a small size difference uD:

η(u,XL, D) = f (X L(uD − 1) + 1)

XL(uD − 1) + 1 − XL(1 − XL)(1 − f )v(u, D))
,

(3)

with η(u, XL, D) as binary packing fraction, f as monosized
packing fraction, u as size ratio dL/dS and as contraction
function (Appendix)

v(u, D) = (uD − 1)2(1 − D−1)

2(uD + 1)(1 − 21−D)
, (4)

and D as the space dimension.
The nominator of Eq. (3) reflects the total volume of

the particles, and the denominator the total volume of the
packing [32]. Equation (3) reveals that that the effect of
bidispersity on packing fraction is governed by the product
XL(1 − XL)(1 − f )v(u, D), where XL(1 − XL) accounts for
the composition, (1 − f ) for the monosized void fraction (de-
pending on particle type and densification) and v(u, D) for
the contraction function (depending on size ratio and dimen-
sion). The contraction function followed from applying the
Onsager excluded volume model to uneven particle pairs of
spherocylinders and cylinders and assessing their statistical
occurrence. It appeared that for larger size ratios, an expres-
sion for v(u, D) provided by Ref. [10] is more accurate. In Ref.
[32] it was seen that for both RCP and RLP in R3 the modified
model is accurate up to u = 2 or so, so a volume ratio uD of
about 8. In Ref. [32] it was furthermore postulated that this
expression is also applicable to D �= 3, in the Appendix this is
further elaborated on.

The large constituent number fraction is related to the large
constituent volume fraction cL by

XL = cL

(1 − cL)uD + cL

, (5)

so that Eq. (3) can be written as

η(u, cL, D) = f (cL(1 − uD) + uD)

cL(1 − uD) + uD − cL(1 − cL)(1 − f )v(u, D)
.

(6)

Equations (3), (4), and (6) reveal that the increase in pack-
ing by binary dispersity is governed by volume ratio uD (for
D = 2 it constitutes the surface area ratio) of a large and a
small particle, so the size ratio to the power dimension.

B. Disks in two dimensions

In this subsection Eqs. (4) and (6) are compared with
simulation results of binary disks packed in two dimensions
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TABLE I. Computationally generated binary packing fraction,
η(u, cL, D = 2), of disks [34].

η η η η

cL u = 1.4 u = 1.7 u = 2 u = 3

0.3 0.84529 0.84801 0.85129 —
0.4 0.84532 0.84901 0.85285 0.86376
0.5 0.84586 0.85012 0.85412 0.86638
0.6 0.84590 0.85073 0.85520 0.86882
0.7 0.84563 0.85066 0.85504 0.86933
0.8 0.84522 0.84998 0.85324 0.86709
0.9 — — 0.85104 0.85959

(i.e., the Euclidean plane). A Monte Carlo-based compression
program was employed by Wan and Yang [34] to simulate
the binary packing fraction. Monte Carlo methods have been
extensively used in prior studies to investigate dense random
packing structures. For instance, Chen et al. [35] generated
truncated tetrahedra in maximally random jammed states us-
ing a sufficiently fast compression algorithm.

Meng et al. [36] produced dense random packings of
monodisperse and binary spherocylinders by starting with
configurations containing significant particle overlaps, fol-
lowed by a relaxation algorithm. Wan and Yang [34] designed
an algorithm based on fast compression that permits particle
overlap, implemented using HOOMD-blue [37]. Specifically,
they began with a random distribution of binary hard disks
at a low packing fraction within a square box with periodic
boundary conditions. A random compression factor between
0.9 and 1 was then selected, with which the box was com-
pressed. If the resulting overlap, measured as the ratio of
overlapping particles to the total particle count, was below 0.1,
the compression was accepted, and overlaps were resolved us-
ing random Monte Carlo moves. Otherwise, the compression
was rejected, and a new compression factor was chosen. This
iterative process continued until dense packing configurations
were achieved. In Table I the resulting packing fractions are
included as function of size ratios u = 1.4, 1.7, 2, and 3 and
of large disk volume.

Furthermore, binary disk packings are generated by
Desmond [38], with the same algorithm reported in Ref. [39],
but with a different energy minimizer. In Table II the gener-
ated packing fractions are tabulated for size ratios u = 1.4,
1.7, and 2, and for a number of number fractions XL. With

cL = XLu2

1 + X L(u2 − 1)
, (7)

the large disk surface fraction is computed and is included in
Table II as well. Note that u2 is the surface area ratio of large
and small disks.

The range of concentrations summarized in Tables I and II
is such that the simulation protocols did not result in crystal-
lization, which was found to be the case for lower and higher
large disk fractions.

In Fig. 1, Eqs. (4) and (6), as well as the data of Tables I
and II, are set out, scaled by a monosized packing fraction f
of 0.8425. This value is based on fitting Eqs. (4) and (6) to
the u = 1.4 data from both Refs. [34] and [38], which result
in the same f, and this aforementioned f lies in the range of

TABLE II. Computationally generated binary packing fraction,
η(u, cL, D = 2), of disks [38].

cL η cL η

XL u = 1.4 u = 1.4 u = 1.7 u = 1.7

0.3 0.4565 0.84646 0.5533 0.85163
0.4 0.5665 0.84667 0.6583 0.85099
0.5 0.6622 0.84617 0.7429 0.84959
0.6 0.7462 0.84584 0.8126 0.84981
0.7 0.8206 0.84543 0.8709 0.84873

cL η

XL u = 2 u = 2

0.3 0.6316 0.85417
0.4 0.7273 0.85411
0.5 0.8000 0.85340
0.6 0.8571 0.85196
0.7 0.9032 0.85026

reported values [40], and is close to the value of 0.844 reported
in Ref. [21]. In Ref. [40] the packing of monosized disks in a
plane was studied employing a statistical geometric approach
as well.

Figure 1 shows that the data generated by Refs. [34,38] are
compatible with each other, and that Eqs. (4) and (6) match
very well with these packing simulations.

As said, the contraction function given by Eq. (4) follows
from the combination of Ref. [10] and the excluded volume
model [33] and this provided better predictions for larger u
than the contraction function based on excluded volume only
[32]. In Fig. 1, also Eq. (6), with as alternative contraction
function [32]

v(u, D = 2) = (u − 1)2, (8)

is included. This function follows from the excluded volume
model, which is correct near u = 1 [32]. In Ref. [32] it was
shown that Eq. (4), which is an extension of the excluded

FIG. 1. Scaled packing fraction of randomly packed binary
disks, η(u,cL, D = 2)/ f , versus large volume fraction cL and for size
ratios u = 1.4, 1.7, 2, and 4, using model expressions Eq. (6) with
either Eq. (4) or Eq. (8), and the simulation values of Tables I [34]
and II [38], using f = 0.8425.
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volume solution to larger size ratios u, matches better with ex-
perimental data in R3 [10] than the original excluded volume
expression. This extension converges to the excluded volume
expression for u ↓ 1. Also in R2, Eq. (4) converges to Eq. (8)
for D = 2 and u ↓ 1 [32] (Appendix).

Indeed for u close to unity, the use of Eqs. (4) and (8)
leads to almost identical η/f, as expected, but for larger u,
Eq. (8) tends to overestimate the binary packing fraction. The
same trend was observed when applying the two different
contraction functions to the packing of spheres in D = 3 [32].
The presented comparison of simulations and model confirms
that the excluded volume approach of Onsager is applicable to
disks in D = 2 and u up to 3 or so (uD ≈ 9), and that extended
contraction function Eq. (4) is most suitable indeed to capture
the effect of size ratio on packing fraction for larger u. Also,
the factor 1 – f in Eqs. (3) and (6), which followed from the
excluded volume model, is a major factor in this equation. For
the considered two-dimensional packing its value (≈ 0.16) is
very distinct from the values pertaining to RLP (≈ 0.45) or
RCP (≈ 0.36) of spheres packed in three dimensions [32]. As
seen before in Ref. [32], the product of (1 − f ) and Eq. (4)
provides an accurate prediction of the packing increase by
introducing bidispersity.

C. Hyperspheres in infinitely large dimension

Binary mixtures of hyperspheres with D → ∞ were stud-
ied by Ikeda et al. [30], constructing a statistical mechanical
mean-field theory, based on the replica liquid theory to
determine the fluid-glass transition in high-dimensions. In-
terestingly, the mean-field number density corresponds to the
average number of overlaps counted in the excluded volume
[41].

The monosized packing fraction f of these hyperspheres
tends to zero in the large-dimension limit: f = 21−D

(0.023 D2 + 0.61 D + 0.365) [41], f ∼ 2−D (D log D) [42],
f = 21−D (1.28 D − 1.36) [43], and f ∼ 2−D (D2) [44], so

Lim
D→∞

f = 0. (9)

A scaling relation between size ratio u to the dimension D
was introduced in Ref. [30] as follows:

u = 1 + R

D
, (10)

so that in the large-dimension limit holds

Lim
D→∞

uD = eR. (11)

In Fig. 2, the scaled bimodal packing fraction,
η(u,cL, D)/ f , following from Eqs. (4), (6), (9), and (11),
is set out against the large hypersphere volume fraction cL,
employing R = 1/2.

In this figure also the computational results from Ref. [30]
are included, taken from their Fig. 3 (in which the scaled
binary glass transition density is set out against small hy-
persphere volume fraction cS, obviously cL + cS = 1), and
which values are listed in Table III. In Fig. 2 an excellent
agreement can be observed between the models presented
here and in Ref. [30].

Ikeda et al. [30] provided data for R = 1/2, so uD = √
e

(≈ 1.649), which is smaller than 8 or 9, the limiting value

FIG. 2. Scaled packing fraction of binary hyperspheres,
η(u,cL,D → ∞)/ f , versus large volume fraction cL, using model
Eqs. (4), (6), (9), and (11), with R = 1/2, and model Eqs. (18) and
(19) for R → ∞ (equal to Eqs. (27) and (28) in Ref. [30]). The
model results from Fig. 3 of Ikeda et al. [30], listed in Table III, for
R = 1/2 (uD = √

e) are also included. The inset shows a magnified
view of the same graph for small η(uD = √

e, cL, D → ∞)/ f .

TABLE III. Scaled binary packing fraction, η(uD =√
e, cL, D → ∞)/ f , of binary hyperspheres that followed

from modelling, extracted from Fig. 3 of Ref. [30].

cL η/f cL η/f
0 1 0.5487 1.01573

0.0487 1.00231 0.5973 1.01564
0.1018 1.00453 0.6504 1.0152
0.1504 1.00667 0.6991 1.0144
0.1947 1.00836 0.7478 1.01324
0.2478 1.01022 0.7965 1.01173
0.3009 1.01173 0.8496 1.0096
0.3496 1.01307 0.8982 1.00684
0.3982 1.01413 0.9469 1.00391
0.4469 1.01484 1 1
0.5000 1.01547 — —

(a) (b)

FIG. 3. Binary packing of noninteracting particles (a) Larger
spheres (or disks in D = 2) added to a monosized packing of smaller
ones. (b) Smaller spheres (or disks in D = 2) added to a monosized
packing of larger ones.
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for the model in D = 2 and 3. Hence, it appears that the
results from statistical mechanical mean-field theory can also
be explained with a geometric hard sphere packing model.
Figure 2 furthermore shows, as also found in Ref. [30], that
though f is zero, the ratio η/ f is not.

III. LARGE SIZE RATIO

In this section the classic model of Furnas is revisited and
applied to hyperspheres. This model provides closed-form
expressions for binary particle mixes with infinite large size
ratio (u → ∞).

A. Furnas model

Furnas [4,5] studied binary systems in three dimensions
and it was concluded that the greater the difference in size
between the two components, the greater the decrease in void
volume. For infinitely large size ratio, the small particles
fill the voids of the large particles, and they form separate
and noninteracting phases. For this situation Furnas provided
closed-form expressions.

The underlying concept also applies to combinations of
two particle types that have different monosized packing frac-
tions [45], e.g., because their shape is different, their particle
size distributions differ, the mode of compaction differs, etc.
The concept is, for instance, also applicable to packings con-
sisting of two continuously particle size distributions that are
mixed [46]. It also applies to mixes of larger and smaller
particles of which one or both of the phases are ordered
(crystalline).

The only prerequisite is that the packing assembly of the
smaller constituent fits in the open space between the larger
one. Here, we will restrict ourselves to two monodisperse
constituents that possess an identical packing fraction, which
is the case for similar particles that are assembled identically.

The volume fraction of the large constituent is defined as

cL = VL

VL + VS
, (12)

whereby for a binary packing fraction obviously holds

η(u, cLD) = VL + VS

VT
, (13)

and where VL and VS are the volumes of the large and small
constituents in the packing, respectively, and with VT as total
volume of the packing (entire space), including the voids.

First, a monosized packing of small particles only is
considered (cL = 0), in which large particles are introduced
[Fig. (3a)]. This is the situation of a particle packing of small
particles and their intermediate voids, total volume VS/f, to
which a volume VL of large particles is added. The binary
packing fraction therefore reads as follows:

η(u → ∞, cL, D = 3) = VL + VS

VL + VS/ f
= f

1 − cL(1 − f )
,

(14)
whereby Eq. (12) has been used.

Next, a packing of monosized large particles is considered,
(cL = 1), total volume VL/f, to which small particles are added

[Fig. 3(b)]. The binary packing fraction reads as follows:

η(u → ∞, cL, D = 3) = VL + VS

VL/ f
= f

cL
, (15)

where again Eq. (12) has been used. Equations (14) and (15)
intersect when large particles have the monosized packing
fraction, and their voids are filled with small particles hav-
ing the monosized packing fraction too. Furnas [4,5] called
mixes of binary particles that obey this composition “saturated
mixtures,” and in such mixtures sufficiently small particles are
added to just fill the void fraction between the large particles.
Large and small particles form two separate phases that have
the same packing fractions, resulting the maximum binary
packing fraction. For such saturated bidisperse packings, the
volume fraction of the large fraction in the mix reads as
follows:

cL,max = csat
L = 1

2 − f
. (16)

At this composition Eqs. (14) and (15) intersect, and

ηmax

f
= ηsat

f
= 2 − f , (17)

whereby ηmax stands for η(u → ∞, cL = cL,max, D = 3), be-
ing the maximum for random binary packings or glasses.
As this saturation point is the intersection of Eqs. (14) and
(15), Eq. (14) is valid for 0 � cL � csat

L , and Eq. (15) for
csat

L � cL � 1. This saturation point can also be understood
in another way: the large particles fill the total space with
packing fraction f, and their voids are filled with the small
particles’ packing that subsequently occupy (1 – f)f of the total
space. Hence, both ingredients fill (2 – f)f of the total space
[Eq. (17)] and the volume fraction of large particles, cL,max,
is (2 − f )−1 in this mix [Eq. (16)]. Furthermore, mathemati-
cally, (2 – f)f cannot exceed unity as f � 1.

Obviously, this concept is applicable only when the smaller
ones do not affect the packing of the larger size group. Experi-
ments with mixtures of broken solids [4,5] and steel balls [11]
revealed that noninteraction between subsequent size groups
is obviously true when u → ∞, but that nondisturbance is
also closely approximated when u ≈ 7 − 10. For angular par-
ticles, Caquot [9] found empirically a comparable size ratio
(u ≈ 8–16). Simulations showed that Eqs. (14) and (15) are
approached closely for u = 10 [22,25].

B. Hyperspheres in infinitely large dimension

The underlying concept, that the holes of the larger group
are filled with the particles of the smaller groups, also holds
for the D = 2 case (circles in a plane), to which Fig. 3
also applies. This spatial or geometric concept holds for all
particle shapes, and for all modes of packing, from RLP to
RCP. Hence, it stands to reason that this geometric concept
also holds in higher dimensions, that is for hyperspheres
(D > 3). This hypothesis is tested by an application to binary
hyperspheres in the large-dimension limit, for which f = 0
[41–44]; see Eq. (9).
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Hence, it follows from Eqs. (14)–(16) that csat
L = 1/2, and

that

η(u → ∞, cL)

f
= 1

1 − cL
(0 � cL � 1/2), (18)

η(u → ∞, cL, D → ∞)

f
= 1

cL
(1/2 � cL � 1).

(19)

The first equation was presented as Eq. (28) in Ref. [30]:

η(u → ∞, cL, D → ∞)

f

= 1

1−cL(1 − 2e−R/2)
(0 � cL � cL,max), (20)

when R → ∞ is applied, and Eq. (19) corresponds to
Eqs. (27) in Ref. [30]. The maximum packing fraction is
attained at cL,max, which equals csat

L (= 1/2) for R → ∞.
Equation (20) also reveals that Eq. (14) is approximated with
e−R/2, so u−D/2 [30], see Eq. (11). In the next section this
limit will be explored in more detail, there a detailed study
is presented of the asymptotic behavior of the binary packing
fraction for large u.

The comparison with the results of Ref. [30] confirms the
conjecture that the Furnas concept of noninteracting binary
particles with large size ratio also holds for higher dimensions.
Alternatively, one can say that the theoretical results by Ikeda
et al. [30] for binary hyperspheres can be explained by the
classic geometric concept of Furnas, originally developed for
particles in three dimensions.

In Fig. 2, Eqs. (18) and (19) (or Eqs. (27) and (28) with
applying R → ∞ in Ref. [30]) are set out. Again, though f
is zero, the ratio η/f is not, and in the large-dimension and
large size ratio limits, its maximum ηsat/ f amounts to 2 at
composition csat

L = 1/2 [Eqs. (16) and (17)]. So where f scales
with 21−D [41–44], ηsat scales with 22−D.

IV. ASYMPTOTC APPROXIMTION FURNAS MODEL

Eqs. (3), (4), and (6) reveal that near u = 1 the binary
packing varies with (uD − 1)2, this asymptotic behavior for u
close to unity was discussed in detail in Ref. [32]. It is also
interesting how the packing fraction approaches asymptoti-
cally the other limit, viz. u → ∞ or u−1 ↓ 0. Here, the Furnas
model is extended by providing an asymptotic expansion of
the binary packing fraction for u−1 tending to zero.

A. Large particles added to small particles packing

First, the following normalized binary packing fraction is
introduced

λ(u,cL, D) = η(u,cL, D) − f

η(u,cL, D)(1 − f )
. (21)

In Ref. [32] this transformation was introduced as for small
size ratio λ(u,cL, D) does no longer depend on monosized
packing fraction f. This readily follows from substituting
Eq. (3) in Eq. (21). The RLP and RCP packing fractions of
binary spheres with small size ratio indeed collapse when
normalized by Eq. (21) [32]. These RLP and RCP assemblies

have a very distinct factor 1 − f indeed (note that 1 − f is the
void fraction of the monosized packing fraction).

In the previous section we have seen that in the large-
dimension limit, in terms of λ [Eq. (21)], Ikeda et al. [30]
proposed the following approximation:

λ(u, cL, D → ∞)

= cL (1 − α u−β ) (0 � cL � cL,max), (22)

with α = 2 and β = D/2, and which is based Eqs. (20) and
(21). The large hypersphere volume fraction cL,max is the vol-
ume fraction at which the binary packing fraction reaches the
maximum. As seen in Sec. III A, cL,max corresponds to csat

L for
u → ∞, for which (csat

L , λsat ) = ((2 − f )−1, (2 − f )−1). For
cL,max � cL � 1 no expansion of Eq. (19) in u was provided
by Ref. [30].

The governing variable in the large size difference limit is
the magnitude of the power β. The infinite size ratio limit of
Furnas is approached when u → ∞, in that case the size of
the voids that contain the small particles is infinitely larger
than the small particle size, and the small particles attain their
infinite volume monosized packing fraction. This void (or
container) size scales linearly with the large particle size.

The relation between container size and monosized pack-
ing fraction was already studied by Scott [47] for monosized
spheres. Scott [47] found that the packing fraction decreases
with container size, and that the infinite packing fraction is
approached by u−1.

Desmond and Weeks [39] studied the effect of container
size on monosized packing fraction, both for D = 2 (disks in
R2) and D = 3 (spheres in R3), also yielding a u−1 depen-
dency in both dimensions. Based on analogical reasoning, it
is invoked that this dependency holds for all dimensions, so
β = 1. Moreover, for u → ∞, in Sec. III we have seen that
this analogical reasoning also held when applying the nonin-
teraction model of Furnas (which corresponds to u−1 = 0) to
D → ∞.

The asymptotic behavior asserted here, that is proportional
to u−1, is different from Ref. [30], which derived a u−D/2

expansion. This latter expansion would imply that the Furnas
limit can also be attained with a small size ratio u if D is large,
which ignores the role of the size ratio.

The proposed asymptotic behavior toward the large size
ratio limit is further analyzed by using the computational
results of Refs. [22,25,27,31], concerning spheres in three
dimensions. In Tables IV, V, VI, and VII their binary RCP
packing fraction results (η) for u = 5 and 10 are summarized,
as well as the pertaining λ.

In Fig. 4, Eq. (22) is set out for α = 1.365 (fitted) and
β = 1, for u = 5, 10, and ∞, as well as the data from Ta-
bles IV, V, VI, and VII concerning 0 � cL � cL,max. One can
see that Eq. (22) with α = 1.365 and β = 1 is able to capture
the simulation results very well, especially for u = 10.

Hence, the asymptotic expansion proposed by Ikeda et al.
[30], based on D → ∞, is also applicable to D = 3. The fitted
value of α is such that it equals 2–f considering that f ≈ 0.635
for RCP of spheres in D = 3. This relation between α and f is
furthermore supported by α = 2 for D → ∞, see Eqs. (20)
and (22), since then f = 0.
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TABLE IV. Binary packing fraction, η(u, cL, D = 3), and nor-
malized binary packing fraction, λ(u, cL D = 3), of binary spheres,
with size ratios u = 5 and 10, taken from Table I in Ref. [22], that
were computationally generated. The monosized packing fraction f
is the value listed at cL = 0 and cL = 1 ( f = 0.6435).

η λ η λ

cL u = 5 u = 5 u = 10 u = 10

0 0.6435 0 0.6435 0
0.2 0.6761 0.135 — —
0.4 0.7152 0.281 0.7278 0.325
0.5 — — 0.7557 0.416
0.6 0.7525 0.406 0.7835 0.501
0.7 0.7714 0.465 0.8150 0.590
0.75 — — 0.8270 0.622
0.8 0.7769 0.482 0.7948 0.190
0.9 0.7111 0.267 — —
1 0.6435 0 0.6435 0

B. Small particles added to large particles packing

The computational results of Refs. [22,25,27,31] also en-
able an analysis of the asymptotic behavior for cL,max �cL �1.
In Fig. 5, λ(u,cL, D = 3)(1 − f ) instead of λ(u,cL, D = 3)
is set out for cL,max � cL � 1, the values again taken from
Tables IV, IV, and VI. For this latter range, λ(1 − f) is set out,
as then the different monosized packing fractions, viz. 0.6435
[22], 0.633 [25], 0.634 [27], and 0.645 [31], can be accounted
for.

TABLE V. Binary packing fraction, η(u, cL, D = 3), and normal-
ized binary packing fraction, λ(u, cL, D = 3), of binary spheres, with
2 different size ratios u, extracted from Fig. 2 in Ref. [25], that were
computationally generated. The monosized packing fraction f is the
value listed at cL = 0 and cL = 1 ( f = 0.633).

η λ η λ

cL u = 5 u = 5 u = 10 u = 10

0 0.633 0 0.633 0
0.05 0.640 0.032 0.642 0.040
0.1 0.650 0.071 0.653 0.083
0.15 0.657 0.101 0.663 0.124
0.2 0.665 0.130 0.673 0.163
0.25 0.673 0.165 0.684 0.204
0.3 0.682 0.196 0.695 0.243
0.35 0.690 0.225 0.708 0.288
0.4 0.700 0.261 0.721 0.334
0.45 0.709 0.294 0.735 0.379
0.5 0.719 0.325 0.748 0.419
0.55 0.728 0.355 0.761 0.458
0.6 0.738 0.387 0.777 0.505
0.65 0.746 0.415 0.793 0.549
0.7 0.754 0.438 0.810 0.597
0.75 0.756 0.163 0.807 0.216
0.8 0.741 0.146 0.762 0.170
0.85 0.720 0.121 0.727 0.129
0.9 0.686 0.078 0.691 0.084
0.95 0.659 0.040 0.664 0.046

1 0.633 0 0.633 0

TABLE VI. Binary packing fraction, η(u, cL, D = 3), and nor-
malized binary packing fraction, λ(u, cL, D = 3), of binary spheres,
with two different size ratios u, extracted from Fig. 6 in Ref. [27], that
were computationally generated. The monosized packing fraction
f = 0.634 [27].

η λ η λ

cL u = 5 u = 5 u = 10 u = 10

0.74 0.775 0.496 0.824 0.824
0.76 0.779 0.508 0.829 0.829
0.80 — — 0.779 0.160

TABLE VII. Binary packing fraction, η(u = 5, cL, D = 3), and
normalized binary packing fraction, λ(u, cL, D = 3), of binary
spheres, extracted from Fig. 7 of Ref. [31], that were computationally
generated. The monosized packing fraction f is the value listed at
cL = 0 and cL = 1 ( f = 0.645).

cL η λ cL η λ

0 0.645 0.000 0.765 0.782 0.492
0.114 0.665 0.082 0.843 0.751 0.397
0.202 0.680 0.142 0.871 0.730 0.326
0.276 0.694 0.196 0.935 0.682 0.151
0.338 0.705 0.239 0.958 0.668 0.093
0.386 0.715 0.274 0.972 0.659 0.057
0.431 0.724 0.304 0.980 0.656 0.044
0.469 0.731 0.331 0.982 0.653 0.031
0.504 0.737 0.351 0.989 0.651 0.023
0.534 0.743 0.371 0.991 0.648 0.013
0.562 0.748 0.386 0.996 0.647 0.008
0.659 0.765 0.440 1 0.646 0
0.721 0.776 0.473

FIG. 4. Normalized binary random packing fraction
λ(u,cL, D = 3) [defined by Eq. (21)] versus large volume
fraction c as given by model Eq. (22) for u = 5, 10, and ∞, with
α = 1.365 and β = 1, and the computational values provided
by Refs. [22,25,27,31], listed in Tables IV, V, VI, and VII. As
csat

L = (2 − f )−1 ≈ 0.733, the tabled values 0 < cL � 0.76 are set
out.
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FIG. 5. Normalized binary random packing fraction (1 − f)
λ(u,cL, D = 3)(defined by Eq. (21)) versus small volume fraction cS

(= 1 − cL) as given by model Eq. (23) for u = 5, 10 and ∞, with α =
1.365, and the computational values provided by Refs. [22,25,27,31],
listed in Tables IV, V, VI, and VII. As csat

L = (2 − f )−1 ≈ 0.733, the
tabled values 0.72 � cL < 1 are set out.

Hence, in terms of λ, the approximation of Eq. (15) [or
Eq. (19)] is written as

λ(u, cL, D = 3)(1 − f ) = (1 − cL) (1 − α u−1)

(cL,max � cL � 1), (23)

so asserting a similar asymptotic behavior as in the concentra-
tion range 0 � cL � cL,max.

In Fig. 5, Eq. (23) is displayed, again using α = 1.365,
and the data from Tables IV, V, VI, and VII concerning
cL,max � cL � 1, so invoking the same values for α and β

as in the range 0 � cL � cL,max. Though the number of data
points is less and more dispersed, we can see that Eq. (23) is
able to capture the asymptotic behavior in this concentration
range for u � 10 well, and that again the value of α = 1.365
provides very good agreement.

C. Expanded Furnas model

The previous analysis allows for new expressions for the
Furnas limit as function of size ratio u. Based on the above
analysis of λ, asymptotic approximations for the binary pack-
ing fraction η of spheres RCP for small u−1 are obtained by
transforming normalized packing fraction λ back to the binary
packing fraction η, using the inverse of Eq. (21):

η(u,cL, D) = f

1−λ(u,cL, D)(1 − f )
. (24)

Substituting Eqs. (22) and (23) yields

η(u, cL, D)

= f

1 − cL(1 − f )(1 − (2 − f )u−1)
(0 � cL � cL,max),

(25)

and
η(u, cL, D)

= f

1 − (1 − cL)(1 − (2 − f )u−1)
(cL,max � cL � 1),

(26)

applicable from u = 10 to ∞, and perhaps even from u = 5
to ∞, whereby f = 0.635. One can recognize the similarity
between Eq. (20) (or Eq. (28) of Ref. [30]) and Eq. (25)
when f = 0 (which is the case for D → ∞) and that here the
expansion follows u−1 instead of u−D/2(e−R/2), as discussed
before.

Obviously Eqs. (25) and (26) tend to the original equations
of Furnas, Eqs. (14) and (15), respectively, for u−1 ↓ 0, so
u → ∞. Equations (25) and (26) allow for an assessment of
the bidisperse packing fraction for small u−1, from 0 up to 0.1
or so. In other words, they are applicable to large but finite
values of u (i.e., u > 10).

For D = 3, it was seen that α = 1.365 and β = 1 are
appropriate values for RCP of spheres. The expressions pre-
sented here might also be applicable for other particle shapes
and other dimensions D if α would equal 2 – f indeed. This
conjecture is supported by the large-dimension limit findings,
for which α = 2 and f = 0.

V. BINARY RANDOM PACKING DIAGRAM

In the previous sections it was seen that the binary random
packing fraction can be described with the same equations for
all D, viz. Eqs. (4) and (6) for uD ↓ 1, and Eqs. (25) and (26)
for u → ∞. In this section a general binary packing fraction
graph in RD is presented, using the suitable normalized binary
random packing fraction λ [Eq. (21)].

A. Phase boundaries

By using Eq. (21), the binary packing fraction for uD ↓ 1,
Eq. (6), can be transformed into λ(uD,cL, D) as follows:

λ(u,cL, D) =cL(1 − cL)v(u, D)

cL(1 − uD) + uD
. (27)

This normalized binary packing fraction no longer contains
the monosized packing fraction f, as was observed in Ref.
[32] where this transformed binary packing fraction was in-
troduced.

In Fig. 6 this normalized packing fraction is included for
uD = 8 and using Eq. (4), e.g., the case of packed disks in
R2 for which u = 2

√
2, or spheres in R3 for which u = 2, the

latter case being analyzed in Ref. [32].
In contrast to for u → ∞, for uD ↓ 1, λ does not depend

on the monosized packing fraction f, it is governed by uD and
composition cL only. However, toward large u, the packing
fraction depends on monosized packing fraction f (which in
turn depends on D) and composition cL only, see Eqs. (22)
and (23).

Figure 6 therefore is a simplified graph of the full range
of all possible amorphous binary particle packing fractions,
applicable to all RD, particle types and densification (from
RLP to RCP), as function of composition and size ratio.

For u → ∞, the upper boundary lines result from Eqs. (22)
and (23) and these lines form a triangle. The top of the triangle
is termed λsat, which follows from Eqs. (17) and (21) as

λmax = λsat = 1

2 − f
. (28)

The coordinates of this top are therefore (csat
L , λsat ) =

((2 − f )−1, (2 − f )−1). Remarkably, the normalized
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FIG. 6. Normalized binary random packing fraction λ(u,cL, D)
[defined by Eq. (21)] for u = 10 and u → ∞ [Eqs. (25) and
(26)], for uD = 8 [Eqs. (4) and (6)] and taking f = 0.635.
The maximum binary packing fraction for u → ∞, (csat

L , λsat ) =
((2 − f )−1, (2 − f )−1) ≈ (0.733, 0.733), is indicated, which is also
the maximum of all conceivable binary random packings.

packing fraction is thus bound by two lines defined by
2 − f . The shaded area covers the range of possible random
binary packing fractions, which depend on composition
cL, size ratio u, and monosized packing fraction f only.
The maximum achievable normalized packing fraction,
(csat

L , λsat ) = ((2 − f )−1, (2 − f )−1) ≈ (0.733, 0.733), is
indicated.

As observed before, for f = 0 (which is the case for
D → ∞) and u−1 = 0 (u → ∞), Eqs. (22) and (23) form an

isosceles triangle, with (csat
L , λsat ) = (1/2, 1/2) as maximum

of the normalized packing fraction. The height from horizon-
tal base to apex is thus 1/2. In the η(u, cL, D) graph, the upper
boundary is then formed by two convex curves (Fig. 2), see
Eqs. (18) and (19), that are reflectionally symmetrical with
respect to vertical line cL = 1/2.

B. Extrema

Toward u ↓ 1, the extremum of Eq. (27) follows from the
partial derivative of λ(u, cL, D), with respect to cL:

λCL (u,cL, D) =
(
uD(1 − cL)2 − c2

L

)
v(u, D)

(cL(1 − uD) + uD)2 . (29)

Equating Eq. (29) to zero yields the large particle volume
fraction cL,max which results in the maximum packing for a
given size ratio u and dimension D:

cL,max = uD/2

uD/2 + 1
. (30)

For uD ↓ 1, this maximum packing fraction occurs at
cL,max = 1/2. It also follows that cL,max is larger than 1/2 for
uD > 1. This can be seen in Fig. 2 (line uD = eR = √

e, inset)
and Fig. 6 (line uD = 8). Equation (30) also follows from
determining the maximum of Eq. (6), that is by differentiating
with respect to cL and equating the derivative to zero. So,
the maximum of λ(u, cL, D) and of η(u, cL, D) occurs at the
same cL,max. The maximum binary packing fraction therefore
follows from substituting Eq. (30) into Eq. (6), producing

ηmax(u,cL,max, D) = (1 − uD)(1 + uD/2) + uD/2(1 + uD/2)2

(1 − uD)(1 + uD/2) + uD/2(1 + uD/2)2 − (1 − f )v(u, D)
, (31)

and the maximum of the normalized binary packing fraction
follows from substituting Eq. (30) in Eq. (27), yielding

λmax(u,cL,max, D) = v(u, D)

(uD/2 + 1)2
. (32)

For the other limit, viz. large size ratio u, the asymptotic
approximations are such that the volume fraction at maximum
packing, cL,max, is csat

L [Eq. (16)] for u−1 < 0.1 (u > 10, so not
u → ∞ only). This particular follows from the intersection
of Eqs. (25) and (26). At this cL,max, the maximum packing
fraction amounts to

ηmax(u, cL,max, D) = f (2 − f )

1 + (1 − f )(2 − f )u−1
, (33)

which is the packing fraction at the intersection of Eqs. (25)
and (26).

At this intersection the maximum normalized packing frac-
tion amounts to

λmax(u,cL,max, D) =1 − (2 − f )u−1

2 − f
, (34)

which the intersection of the lines given by Eqs. (22) and (23)
at cL,max = csat

L (when α is taken to be 2 – f and β = 1).

Note that these ηmax and λmax do not depend on dimension
D. For u → ∞, λmax is λsat, and as concluded before, it ap-
pears that the values of λsat and csat

L are then the same, namely
(2 − f )−1, see Eq. (16) and Fig. 6. In Fig. 6, Eqs. (22) and (23)
are set out with α = 2 − f and β = 1, and taking f = 0.635,
for u = 10 and u = ∞, and the maxima can be seen.

Interestingly, for f = 0, cL,max is 1/2 for uD = 1, then
increases for uD > 1, and for larger uD it returns to 1/2 again
for u larger than 10 or so. Also for f > 0 one can observe that
cL,max first increases with u increasing from unity [11,22,25],
and then decreases to csat

L when u exceeds 10. For these cases
this trend in cL,max eccentricity is more difficult to recognize
than for f = 0, i.e., in the large-dimension limit.

VI. CONCLUSION

This paper addresses the effect of bidispersity on the ran-
dom packing fraction (or the glass transition), η(u, cL, D), of
similar particles, with small size difference (u near unity) and
large size difference (u−1 near zero), in a variety of Euclidean
spaces (D = 2, 3, and ∞), with emphasis on hyperspheres.

First, small size difference is studied. The model of
Ref. [32], derived by combining Onsager’s excluded volume
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model of particle pairs [33], and their statistical occurrence,
and its validity extension by invoking the work of Ref. [10],
is recapitulated. This modified excluded volume based model,
governed by Eqs. (3) and (4), is successfully applied to both
binary disks in R2, and to hyperspheres in the large-dimension
limit. The approach is validated using the results of the theo-
retical [30] and computational studies [34,38]. The presented
model contains the factor 1 – f, with f as monosized packing
fraction. From D = 2 to D → ∞ this factor varies from about
0.1575 to 1.

Subsequently, the opposite limit, infinite large size dif-
ference, is addressed. Here, the classic geometric model
of Furnas is recapitulated. Furnas [4,5] studied bidisperse
mixtures of particle groups with constituents that have an
infinitely large size disparity u. In this system the small and
large particles form separate and noninteracting phases, the
assembly of the small particles filling the voids of the assem-
bly of the large particles. It is successfully demonstrated that
this concept is also applicable to binary hyperspheres in the
large-dimension limit, again using the theoretical results of
Ref. [30].

An original model is proposed for the asymptotic approxi-
mation of the Furnas limit, so for u−1 ↓ 0. It is reasoned that
in all dimensions this approximation depends on u−1. Based
on the packing fraction of spheres in D = 3 and hyperspheres
in D → ∞, there is sufficient evidence that the coefficient
in the asymptotic approximation is 2 − f . New expressions
for the binary packing fraction for large size ratio u are put
forward, Eqs. (25) and (26), that converge to the original
Furnas expressions, viz. Eqs. (14) and (15), for u → ∞, and
which do not depend on space dimension D.

Finally, a packing graph of the normalized binary packing
fraction λ(u,cL, D) is constructed (Fig. 6), featuring the limits
of the amorphous state of D-dimensional binary packings as
a function of a reduced number of parameters. This transfor-
mation of the packing fraction was introduced in Ref. [32]
and does, in contrast to the binary packing fraction η(u, cL,
D), not depend on monosized packing fraction f anymore for
uD close to unity. The horizontal base line of the normalized
packing fraction, to uD = 1, is asymptotically approached by
(uD − 1)2 with uD as volume ratio (surface ratio in R2) of the
bidisperse particles.

Furthermore, for u−1 close to zero, λ(u,cL, D) depends
linearly on cL, implying that the original packing fraction
η(u, cL, D) are convex functions. In this limit, the normalized
packing fraction depends on f, but not on space dimension
D. The upper boundary of the normalized packing fraction,
belonging to u−1 = 0, are formed by two straight lines, that
are approached asymptotically by the term (2 − f )u−1.

The λ(u,cL, D) figure features for u → ∞ the saturated
composition, cL = csat

L , which constitutes a special mix where
the concentrations of large and small fractions are such that
the small particles packing fits in the voids of the large
particles packing (Fig. 3) and hence they form separate phases
that have the same packing fraction. This combination of
size ratio and composition cL also represents the maximum
attainable binary random packing fraction. It appears that the
values of λsat and csat

L are the same, namely (2 − f )−1, and
these values characterize the graph (e.g., Fig. 6).

The packing fraction of the two monodisperse compo-
nents, and of their bidisperse mix, depends on the compaction,
which are asserted all to be identical. This compaction may
correspond to MRJ, RCP, RLP, glass (transition) density,
etc. The present model for the binary packing fraction can
cope with all states of densification, i.e., they all feature the
same binary packing fraction divided by monosized pack-
ing (η(u,cL, D)/ f ). Though in the large-dimension limit the
monodisperse packing fraction f of the hyperspheres tends to
zero, η(u,cL, D)/ f attains a finite value.

Hence, it appears that the packing fraction of the binary
mix depends on the monosized packing fraction f, space di-
mension D, composition cL and size ratio u. In the small
size disparity limit it depends on volume ratio uD, and toward
infinite size difference it depends on inverse size ratio u−1.

Noteworthy, the models used are based on physical prin-
ciples, and no adjustable parameter needed to be introduced
to achieve the presented results. Concluding, one can say that
the results of this study are a strong support for the applica-
bility and validity of analytical “simple” and “athermal” hard
hypersphere packing models, based on statistical geometry, to
describe the amorphous states of soft condensed matter.
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APPENDIX: CONTRACTION FUNCTION

In this Appendix the contraction function v(u, D) as
function of the space dimension is analyzed. Based on the
application of the Onsager excluded volume concept to binary
packings in arbitrary dimension D, the following contraction
function was derived [32]

v(u, D) = w(u, D)(u − 1)2, (A1)

with

w(u, D) = uD + 1 − 21−D(u + 1)D

(1 − 21−D)(u − 1)2 . (A2)

For D = 2, 3, …, 10, this equation was solved analyti-
cally and closed-form expressions for w(u, D) obtained [32].
These w(u, D) are polynomial functions in u of order D –
2, with all terms having positive coefficients. So each poly-
nomial term αuβ (α > 0, 2 � β � D − 2) can expanded as

025411-10



RANDOM PACKING FRACTION OF BINARY … PHYSICAL REVIEW E 112, 025411 (2025)

TABLE VIII. Values of w(u = 1, D) following from Eq. (A2)
[32], their scaled value, and the asymptotic approximation Eq. (A9)
for large D. +In Ref. [32] this value was erroneously listed as
11 394/511.

D w(u = 1, D) w(u = 1, D)/D2

2 1 1.125
3 2 1
4 24/7 0.964
5 16/3 0.960
6 240/31 0.968
7 32/3 0.980
8 1792/127 0.992
9 1536/85 1.004
10 11 520/511+ 1.014

α(1 + β(u–1) + O((u–1)2) by the binomial series

(1 + ε)β = 1 + βε + β(β − 1)ε2

2!
+ O(ε3), (A3)

with ε = u − 1. This implies that near ε = 0 (in the vicinity
of u = 1), the second order approximation of w(u, D) in (u –
1), see Eq. (A1), equals w(u = 1, D) (u − 1)2.

Equation (A1) is based on the Onsager excluded volume
model, which is applicable to u close to unity. It was seen in
Ref. [32] that for larger u (u values of around 2 to 3) in R3 the
following expression appeared to be more accurate:

v(u, D) = w(u = 1, D)
2(uD − 1)2

D2(uD + 1)
, (A4)

which follows from the experimental work by Mangelsdorf
and Washington [10]. In Sec. II B the same conclusion was
drawn for R2.

It can be verified that Eqs. (A1) and (A4) converge for u↓1
by using Eq. (A3) and the asymptotic approximations

((1 + ε)D − 1)2 = (εD)2 + O(ε3), (A5)

and

(1 + ε)D + 1 = 2 + εD + O(ε2), (A6)

In other words, Eq. (A4) features an application extension
of the original excluded volume-based model for larger size
ratios.

As said, in Ref. [32], w(u, D) was obtained for whole
number dimensions D = 2, 3, …, 10, by solving Eq. (A2).
Subsequently, w(u = 1, D) was computed, which is needed to
apply Eq. (A4). It, for instance, followed that for D = 2 and
D = 3, w(u = 1, D)/D2 amounts to 1/4 and 2/9, respectively
[32]. Also for D = 4, 5, …., 10, w(u = 1, D)/D2 appeared
to be close to 2/9.

In Table VIII all computed values of w(u = 1, D) are listed,
that follow from Eq. (A2) [32], as well as the values scaled by
D2. In Fig. 7 these scaled values for D = 2, 3, …., 10 are
displayed.

FIG. 7. Scaled values of w(u = 1, D), w(u = 1, D)/D2, as func-
tion of space dimension D. The solutions of Eq. (A2) are taken
from Ref. [32] and are also listed in Table VIII, the analytic solu-
tion [Eq. (A7)] is also displayed. The horizontal asymptote w(u =
1, D)/D2 = 1/4 is included to guide the eye.

As only w(u = 1, D) needs to be specified to apply
Eq. (A4), the limit of Eq. (A2) for u ↓ 1 is determined:

w(u =1, D) = Lim
u→1

uD + 1 − 21−D(u + 1)D

(1 − 21−D)(u − 1)2
= D(D − 1)

4(1 − 21−D)
,

(A7)
whereby L’Hôpital’s (or Bernoulli’s) rule is applied twice.
This equation reveals that for D → ∞, w(u = 1, D)/D2

tends to 1/4, the same value as for D = 2. In Fig. 7 w(u =
1, D)/D2, using Eq. (A7), is also included.

It indeed follows that Eq. (A7) indeed coincides with
w(u = 1, D) that followed from solving Eq. (A2) for
D = 2, 3, . . . , 10.

Equation (A7) however provides an analytical expression
for w(u = 1, D)/D2 for all D, which is a continuous function.
The Dmin pertaining to this minimum can be computed by
differentiating w(u = 1, D)/D2 by D, and equating the result
to zero:

1 − 21−Dmin + Ln(2)Dmin(Dmin − 1)21−Dmin = 0. (A8)

Solving this implicit algebraic equation in Dmin yields the
non-Euclidean space Dmin ≈ 4.72 for which w(u = 1, D =
Dmin)/D2

min ≈ 0.213.
To summarize, Table VIII and Fig. 7 thus reveal that w(u =

1, D)/D2 is maximum at D = 2, then decreases to Dmin ≈
4.72, and then increases again toward the same maximum
as D = 2, namely w(u = 1, D)/D2 = 1/4. This asymptote is
included in Fig. 7.

In Ref. [32], w(u = 1, D)/D2 was solved for integer val-
ues D = 2 up to D = 10 (Table VIII). As for D = 3 to 10 the
values were very similar and close to 2/9 (see Fig. 7), it was
extrapolated that this w(u = 1, D)/D2 = 2/9 also holds for
D > 10. However, from the analysis presented here, we can
conclude that for larger D, w(u = 1, D)/D2 approaches 1/4
(Fig. 7), that is the same value as for D = 2.
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